Skip to main content
Log in

Automatic exposure selection and fusion for high-dynamic-range photography via smartphones

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

High-dynamic-range (HDR) photography involves fusing a bracket of images taken at different exposure settings in order to compensate for the low dynamic range of digital cameras such as the ones used in smartphones. In this paper, a method for automatically selecting the exposure settings of such images is introduced based on the camera characteristic function. In addition, a new fusion method is introduced based on an optimization formulation and weighted averaging. Both of these methods are implemented on a smartphone platform as an HDR app to demonstrate the practicality of the introduced methods. Comparison results with several existing methods are presented indicating the effectiveness as well as the computational efficiency of the introduced solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mann, S., Picard, R.: Being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: IS&T, 48th annual conference, USA, pp. 422–428 (1995)

  2. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High Dynamic Range Imaging, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2010)

    Google Scholar 

  3. Barakat, N., Hone, A.N., Darcie, T.E.: Minimal-bracketing sets for high-dynamic-range image capture. IEEE Trans. Image Process. 17(10), 1864–1875 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gupa, M., Iso, D., Nayar, S.K.: Fibonacci exposure bracketing for high dynamic range imaging. In: IEEE International Conference on Computer Vision (ICCV), Australia, pp. 1473–1480 (2013)

  5. Huang, K., Chiang, J.: Intelligent exposure determination for high quality HDR image generation. In: IEEE International Conference on Image Process (ICIP), Australia, pp. 3201–3205 (2013)

  6. Pourreza-Shahri, R., Kehtarnavaz, N.: Automatic exposure selection for high dynamic range photography. In: IEEE International Conference on Consumer Electronics (ICCE), USA, pp. 469–497 (2015)

  7. Pourreza-Shahri, R., Kehtarnavaz, N.: Exposure bracketing via automatic exposure selection. In: IEEE International Conference on Image Processing (ICIP), Canada, pp. 320–323 (2015)

  8. Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), USA, pp. 369–378 (1997)

  9. Cvetkovi, S., Klijn, J., With, P.H.N.: Tone-mapping functions and multiple-exposure techniques for high dynamic-range images. IEEE Trans. Consum. Electron. 54(2), 904–911 (2008)

  10. Kuang, J., Johnson, G.M., Fairchild, M.D.: iCAM06: a refined image appearance model for HDR image rendering. J. Vis. Commun. 18, 406–414 (2007)

    Google Scholar 

  11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 21(3), 249256 (2008)

    Google Scholar 

  12. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257266 (2002)

    Article  Google Scholar 

  13. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  14. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28(1), 161–171 (2009)

    Article  Google Scholar 

  15. Li, S., Kang, X.: Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 58(2), 626–632 (2012)

    Article  Google Scholar 

  16. Song, M., Tao, D., Chen, C., Bu, J., Luo, J., Zhang, C.: Probabilistic exposure fusion. IEEE Trans. Image Process. 21(1), 341–357 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhang, W., Cham, W.-K.: Gradient-directed multi-exposure composition. IEEE Trans. Image Process. 21(4), 2318–2323 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shen, R., Cheng, I., Shi, J., Basu, A.: Generalized random walks for fusion of multi-exposure images. IEEE Trans. Image Process. 20(12), 3634–3646 (2011)

    Article  MathSciNet  Google Scholar 

  19. Shen, R., Cheng, I., Basu, A.: QoE-based multi-exposure fusion in hierarchical multivariate Gaussian CRF. IEEE Trans. Image Process. 22(6), 2469–2478 (2013)

    Article  MathSciNet  Google Scholar 

  20. Xu, L., Du, J., Zhang, Z.: Feature-based multiexposure image-sequence fusion with guided filter and image alignment. J. Electron. Imaging 24(1), 013–022 (2015)

    Google Scholar 

  21. Hu, J., Gallo, O., Pulli, K.: Exposure stacks of live scenes with hand-held cameras. In: European Conference on Computer Vision (ECCV), Italy, pp. 499–512 (2012)

  22. Tico, M., Gelfand, N., Pulli, K.: Motion-blur-free exposure fusion. In: IEEE International Conference on Image Processing (ICIP), China, pp. 3321–3324 (2010)

  23. Yeganeh, H., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22(2), 657–667 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ward, G.: Fast, robust image registration for compositing high dynamic range photographs from handheld exposures. J. Graph. Tools 8(2), 17–30 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Pourreza-Shahri.

Appendix: Optimization solution

Appendix: Optimization solution

This appendix provides the solution of the optimization problem with only one gradient term. The derivation for two terms is straightforward and not included here to save space. The optimization formulation for one gradient term is given by

$$\begin{aligned} \widehat{\mathbf{Y }}=\text {argmin}_\mathbf{Y }\big \lbrace \Vert \mathbf Y -\mathbf X \Vert _F^2+ \lambda \Vert \nabla \mathbf Y -\varvec{\Lambda } \Vert _F^2\big \rbrace \end{aligned}$$
(14)

where \(\varvec{\Lambda }\) represents the gradient of Y and \(\nabla \) indicates the gradient operator. In vector form, Equation (14) can be written as:

$$\begin{aligned} \widehat{\mathbf{y }}=\text {argmin}_\mathbf{y }\big \lbrace \Vert \mathbf y -\mathbf x \Vert ^2+ \lambda \Vert \mathbf C {} \mathbf y -\varvec{\delta } \Vert ^2\big \rbrace \end{aligned}$$
(15)

where y, x, and \(\varvec{\delta }\) represent the column vector versions of Y, X, and \(\varvec{\Lambda }\), respectively, and C denotes the block-circulant matrix representation of \(\nabla \). By taking the derivative with respect to y, the following solution is obtained

$$\begin{aligned} \widehat{\mathbf{y }}= \big (\mathbf I +\lambda \mathbf C ^T\mathbf C \big )^{-1} \big (\mathbf x +\lambda \mathbf C ^T\varvec{\delta } \big ) \end{aligned}$$
(16)

where I denotes the identity matrix. Since C is a block-circulant matrix, it can be represented in diagonal form as:

$$\begin{aligned} \mathbf C =\mathbf W {} \mathbf E {} \mathbf W ^{-1} \end{aligned}$$
(17)

where E is the diagonal version of C and W is the DFT (discrete Fourier transform) operator. The diagonal values of E correspond to the DFT coefficients of \(\nabla \) (\(\nabla \) should be zero-padded properly before applying DFT). Hence, (16) can be rewritten as:

$$\begin{aligned} \widehat{\mathbf{y }}= \big (\mathbf I +\lambda \mathbf W {} \mathbf E ^{\dagger }{} \mathbf E {} \mathbf W ^{-1} \big )^{-1} \big (\mathbf x +\lambda \mathbf W {} \mathbf E ^{\dagger }{} \mathbf W ^{-1} \varvec{\delta } \big ) \end{aligned}$$
(18)

By multiplying both sides of (18) by \(\mathbf W ^{-1}\), the following equation is resulted

$$\begin{aligned} \mathbf W ^{-1}\widehat{\mathbf{y }}= \big (\mathbf I +\lambda \mathbf E ^{\dagger }{} \mathbf E \big )^{-1} \big (\mathbf W ^{-1}{} \mathbf x +\lambda \mathbf E ^{\dagger }{} \mathbf W ^{-1} \varvec{\delta } \big ) \end{aligned}$$
(19)

Since \(\mathbf W ^{-1}\widehat{\mathbf{y }}\), \(\mathbf W ^{-1}{} \mathbf x \), and \(\mathbf W ^{-1}\varvec{\delta }\) correspond to the DFT of \(\widehat{\mathbf{y }}\), x, and \(\varvec{\delta }\), respectively, (19) can be stated as follows:

$$\begin{aligned} \mathcal {F}\lbrace \widehat{\mathbf{Y }}_{u,v}\rbrace =\frac{ \mathcal {F}\lbrace \mathbf X \rbrace _{u,v}+ \lambda \mathcal {F}\lbrace \nabla \rbrace _{u,v}^{\dagger } \mathcal {F}\lbrace \varvec{\Lambda }\rbrace _{u,v} }{ 1+\lambda \Vert \mathcal {F}\lbrace \nabla \rbrace _{u,v} \Vert ^2 } \end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourreza-Shahri, R., Kehtarnavaz, N. Automatic exposure selection and fusion for high-dynamic-range photography via smartphones. SIViP 11, 1437–1444 (2017). https://doi.org/10.1007/s11760-017-1104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1104-9

Keywords

Navigation