Skip to main content
Log in

Finite-buffer polling systems with threshold-based switching policy

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We consider a system of two separate finite-buffer M / M / 1 queues served by a single server, where the switching mechanism between the queues is threshold-based, determined by the queue which is not being served. Applications may be found in data centers, smart traffic-light control and human behavior. Specifically, whenever the server attends queue i (\(Q_i\)) and the number of customers in the other queue, \(Q_j\) (\(i,j=1,2\); \(j\ne i\)), reaches its threshold level, the server immediately switches to \(Q_j\) whenever \(Q_i\) is below its threshold. When a served \(Q_i\) becomes empty we consider two scenarios: (i) non-work-conserving; and (ii) work-conserving. We present occasions where the non-work-conserving policy is more economical than the work-conserving policy when high switching costs are involved. An intrinsic feature of the process is an oscillation phenomenon: when the occupancy of \(Q_i\) decreases the occupancy of the other queue increases. This fact is illustrated and discussed. By formulating the system as a three-dimensional continuous-time Markov chain we provide a probabilistic analysis of the system and investigate the effects of buffer sizes and arrival rates, as well as service rates, on the system’s performance. Numerical examples are presented and extreme cases are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arazi A, Ben-Jacob E, Yechiali U (2005) Controlling an oscillating Jackson-type network having state-dependant service rates. Math Methods Oper Res 62:453–466

    Article  Google Scholar 

  • Avram F, Gómez-Corral A (2006) On the optimal control of a two-queue polling model. Oper Res Lett 34:339–348

    Article  Google Scholar 

  • Boon MAA, van der Mei RD, Winands EMM (2011) Applications of polling systems. Surv Oper Res Manag Sci 16(2):67–82

    Google Scholar 

  • Boxma OJ, Down DG (1997) Dynamic server assignment in a two-queue model. Eur J Oper Res 103:595–609

    Article  Google Scholar 

  • Boxma OJ, Koole GM, Mitrani I (1995a) A two-queue polling model with a threshold service policy. In: Dowd PW, Gelenbe E (eds) Proceedings MASCOTS ’95. IEEE Computer Society Press, Los Alamitos, pp 84–89

  • Boxma OJ, Koole GM, Mitrani I (1995b) Polling models with threshold switching. In: Baccelli F, Jean-Marie A, Mitrani I (eds) Quantitative methods in parallel systems. Springer Verlag, Berlin, pp 129–140

    Chapter  Google Scholar 

  • Bright LW, Taylor PG (1995) Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch Models 11(3):497–526

    Article  Google Scholar 

  • Coffman EG Jr, Puhalskii AA, Reiman MI (1995) Polling systems with zero switchover times: a heavy-traffic averaging principle. Ann Appl Probab 5(3):681–719

    Article  Google Scholar 

  • Da Fonseca CM (2006) On the location of the eigenvalues of Jacobi matrices. Appl Math Lett 19(11):1168–1174

    Article  Google Scholar 

  • De Nitto Personè V, Grassi V (1996) Solution of finite QBD processes. J Appl Probab 33(4):1003–1010

    Article  Google Scholar 

  • Haverkort B, Idzenga HP, Kim BG (1994) Performance evaluation of threshold-based ATM cell scheduling policies under Markov modulated Poisson traffic using stochastic Petri nets. In: Modelling and evaluation of ATM networks, vol 17, IFIP Conference Proceedings. Chapman & Hall, pp 553–572

  • Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. SIAM and ASA, Philadelphia

    Book  Google Scholar 

  • Lee D-S (1996) A two-queue model with exhaustive and limited service disciplines. Commun Stat Stoch Models 12(2):285–305

    Article  Google Scholar 

  • Lee D-S, Sengupta B (1993) Queueing analysis of a threshold based priority scheme for ATM networks. IEEE/ACM Trans Netw 1(6):709–717

    Article  Google Scholar 

  • Litvak N, Yechiali U (2003) Routing in queues with delayed information. Queueing Syst 43:147–165

    Article  Google Scholar 

  • Neuts MF (1981) Matrix geometric solutions in stochastic models—an algorithmic approach. The Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Perel E, Yechiali U (2008) Queues where customers of one queue act as servers of the other queue. Qeueueing Syst 60:271–288

    Article  Google Scholar 

  • Perel E, Yechiali U (2013) On customers acting as servers. Asia Pac J Oper Res 30(5). doi:10.1142/S021759591350019X

  • Perel N, Yechiali U (2013) The Israeli queue with priorities. Stoch Models 29:353–379

    Article  Google Scholar 

  • Takagi H (1986) Analysis of polling systems. The MIT Press, Cambridge, MA, USA

  • Usmani RA (1994) Inversion of a tridiagonal Jacobi matrix. Linear Algebra Appl 212(213):413–414

    Article  Google Scholar 

  • Yechiali U (1993) Analysis and control of polling systems. In: Donatiello L, Nelson R (eds) Performance evaluation of computer and communication systems, Joint tutorial papers of performance ’93 and sigmetrics ’93, vol 729, London. Springer, Berlin, pp 630–650

Download references

Acknowledgments

We thank the referees for their constructive comments that improved the presentation of the paper and enriched the discussion regarding the roots of the polynomials \(|A(z)|=0\) and \(|B(w)|=0\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrat Perel.

Appendix

Appendix

1.1 Proof of Theorem 2.3

Proof

By induction over k.

For \(k=1\),

$$\begin{aligned} q_1(z)=\alpha _0(z)=(-\lambda _1\mu _1)^0\left( \left( {\begin{array}{c}0\\ 0\end{array}}\right) \alpha ^{0}(z)\alpha _0(z)+\left( {\begin{array}{c}0\\ -1\end{array}}\right) \alpha ^{1}(z)\right) . \end{aligned}$$

For \(k=2\),

$$\begin{aligned} q_2(z)= & {} \alpha (z)\alpha _0(z)-\lambda _1\mu _1\\= & {} \sum _{l=0}^{1}{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}1-l\\ l\end{array}}\right) \alpha ^{1-2l}(z)\alpha _0(z)+\left( {\begin{array}{c}1-l\\ l-1\end{array}}\right) \alpha ^{2-2l}(z)\right) }. \end{aligned}$$

We now show that the proposition is valid for any k. Suppose \(k=2i\) (the case where \(k=2i+1\) is similar and hence omitted from the presentation), and notice that for all \(k\ge 0\), \(\left( {\begin{array}{c}k\\ 0\end{array}}\right) =\left( {\begin{array}{c}k\\ k\end{array}}\right) =1\), and \(\left( {\begin{array}{c}k\\ l\end{array}}\right) =\left( {\begin{array}{c}k-1\\ l\end{array}}\right) +\left( {\begin{array}{c}k-1\\ l-1\end{array}}\right) \), for every \(0\le l\le k\),

$$\begin{aligned} q_k(z)&=\alpha (z)q_{k-1}(z)-\lambda _1\mu _1q_{k-2}(z)\\&=\alpha (z)\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l-1\\ l\end{array}}\right) \alpha ^{2i-1-2l-1}(z)\alpha _0(z)\right. \\&\left. \quad +\left( {\begin{array}{c}2i-1-l-1\\ l-1\end{array}}\right) \alpha ^{2i-1-2l}(z)\right) \\&\quad -\lambda _1\mu _1\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-2-l-1\\ l\end{array}}\right) \alpha ^{2i-2-2l-1}(z)\alpha _0(z)\right. \\&\left. \quad +\left( {\begin{array}{c}2i-2-l-1\\ l-1\end{array}}\right) \alpha ^{2i-2-2l}(z)\right) \\ \end{aligned}$$
$$\begin{aligned}&=\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l-1\\ l\end{array}}\right) \alpha ^{2i-1-2l}(z)\alpha _0(z)\right. \\&\left. \quad +\left( {\begin{array}{c}2i-1-l-1\\ l-1\end{array}}\right) \alpha ^{2i-2l}(z)\right) \\&\quad +\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^{l+1} \left( \left( {\begin{array}{c}2i-2-l-1\\ l\end{array}}\right) \alpha ^{2i-2-2l-1}(z)\alpha _0(z)\right. \\&\left. \quad +\left( {\begin{array}{c}2i-2-l-1\\ l-1\end{array}}\right) \alpha ^{2i-2-2l}(z)\right) \\&=\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l-1\\ l\end{array}}\right) \alpha ^{2i-1-2l}(z)\alpha _0(z)\right. \\ \end{aligned}$$
$$\begin{aligned}&\left. \quad +\left( {\begin{array}{c}2i-1-l-1\\ l-1\end{array}}\right) \alpha ^{2i-2l}(z)\right) \\&\quad +\sum _{l=1}^{i}{\left( -\lambda _1\mu _1\right) ^{l} \left( \left( {\begin{array}{c}2i-2-l\\ l-1\end{array}}\right) \alpha ^{2i-2l-1}(z)\alpha _0(z)+\left( {\begin{array}{c}2i-2-l\\ l-2\end{array}}\right) \alpha ^{2i-2l}(z)\right) }\\&=(-\lambda _1\mu _1)^0\left( \left( {\begin{array}{c}2i-2\\ 0\end{array}}\right) \alpha ^{2i-1}(z)\alpha _0(z)+\left( {\begin{array}{c}2i-2\\ -1\end{array}}\right) \alpha ^{2i}(z)\right) \\&\quad +\sum _{l=1}^{i-1}{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-2-l\\ l\end{array}}\right) +\left( {\begin{array}{c}2i-2-l\\ l-1\end{array}}\right) \right) \alpha ^{2i-2l-1}(z)\alpha _0(z)}\\ \end{aligned}$$
$$\begin{aligned}&\quad +\sum _{l=1}^{i-1}{\left( -\lambda _1\mu _1\right) ^l\left( \left( {\begin{array}{c}2i-2-l\\ l-1\end{array}}\right) +\left( {\begin{array}{c}2i-2-l\\ l-2\end{array}}\right) \right) \alpha ^{2i-2l}(z)}\\&\quad +\left( -\lambda _1\mu _1\right) ^i\left( \left( {\begin{array}{c}2i-2-i\\ i-1\end{array}}\right) \alpha ^{2i-2i-1}(z)\alpha _0(z)+\left( {\begin{array}{c}2i-2-i\\ i-2\end{array}}\right) \alpha ^{2i-2i}(z)\right) \\&=\sum _{l=0}^{i}{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-l-1\\ l\end{array}}\right) \alpha ^{2i-2l-1}(z)\alpha _0(z)+\left( {\begin{array}{c}2i-l-1\\ l-1\end{array}}\right) \alpha ^{2i-2l}(z)\right) }\\&=\sum _{l=0}^{\lfloor {\frac{k}{2}}\rfloor }{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}k-l-1\\ l\end{array}}\right) \alpha ^{k-2l-1}(z)\alpha _0(z)+\left( {\begin{array}{c}k-l-1\\ l-1\end{array}}\right) \alpha ^{k-2l}(z)\right) }. \end{aligned}$$

This completes the proof. \(\square \)

1.2 Proof of Theorem 2.4

Proof

We will proceed by induction over k. First we note that \(A_2=\mathrm{diag}\left( \mu _1\right) \), so that, \(A_2^{-1}=\mathrm{diag}\left( \frac{1}{\mu _1}\right) \). In addition, \(A_0=\mathrm{diag}\left( \lambda _1\right) =\lambda _1I_{K_2}\). Now, from (2.24) we have

$$\begin{aligned} \vec {P}_1^1=-\frac{1}{\mu _1}\vec {P}_0^1A_1^0=\vec {P}_0^1C_1. \end{aligned}$$

Suppose that the proposition holds for all values up to some \(k-1\), where \(1\le k-1\le K_1-2\). We will show that it holds for \(k\le K_1-1\). From (2.24) we have

$$\begin{aligned} \vec {P}_k^1=-\left( \vec {P}_{k-2}^1A_0+\vec {P}_{k-1}^1A_1\right) A_2^{-1}. \end{aligned}$$

Using the induction assumption with regard to the values of \(\vec {P}_{k-2}^1\) and \(\vec {P}_{k-1}^1\) we get

$$\begin{aligned} \vec {P}_k^1&=-\left( \vec {P}_{0}^1C_{k-2}A_0+\vec {P}_{0}^1C_{k-1}A_1\right) A_2^{-1}\\&=-\vec {P}_{0}^1\left( C_{k-2}A_0+C_{k-1}A_1\right) A_2^{-1}\\&=-\frac{1}{\mu _1}\vec {P}_{0}^1\left( \lambda _1C_{k-2}+C_{k-1}A_1\right) . \end{aligned}$$

Therefore \(\vec {P}_k^1=\vec {P}_{0}^1C_k\), where \(C_k=-\frac{1}{\mu _1}\left( \lambda _1C_{k-2}+C_{k-1}A_1\right) \).

This completes the proof. \(\square \)

1.3 Proof of Theorem 2.6

Proof

Similarly to the proof of Theorem 2.3, we proceed by induction over k.

For \(k=1\),

$$\begin{aligned} C_1=\frac{-1}{\mu _1}A_1^0=\left( \frac{-1}{\mu _1}\right) ^1(-\lambda _1\mu _1)^0\left( \left( {\begin{array}{c}0\\ 0\end{array}}\right) A_1^0\left( A_1\right) ^0+\left( {\begin{array}{c}0\\ -1\end{array}}\right) \left( A_1\right) ^1\right) . \end{aligned}$$

For \(k=2\),

$$\begin{aligned} C_2= & {} \frac{-1}{\mu _1}\left( \lambda _1I_{K_2}+\left( \frac{-1}{\mu _1}\right) A_1^0A_1\right) \\= & {} \left( \frac{-1}{\mu _1}\right) ^2 \sum _{l=0}^{1}{\left( -\lambda _1\mu _1\right) ^{l} \left( \left( {\begin{array}{c}1-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{1-2l}+\left( {\begin{array}{c}1-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2-2l}\right) }. \end{aligned}$$

We now prove that the proposition holds for any k. Suppose \(k=2i+1\) (the case for even values, \(k=2i\), is presented in the proof of Theorem 2.3),

$$\begin{aligned} C_k&=\frac{-1}{\mu _1}\left( C_{k-1}A_1+\lambda _1C_{k-2}\right) \\&=\frac{-1}{\mu _1}\Bigg (\left( \frac{-1}{\mu _1}\right) ^{2i}\sum _{l=0}^{i}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2l-1}\right. \nonumber \\&\left. \quad +\left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i-2l}\right) A_1\\&\quad +\lambda _1\left( \frac{-1}{\mu _1}\right) ^{2i-1}\sum _{l=0}^{i-1}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-1-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-1-2l-1}\right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\left. \quad +\left( {\begin{array}{c}2i-1-1-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i-1-2l}\right) \Bigg )\\&=\left( \frac{-1}{\mu _1}\right) ^{2i+1}\Bigg (\sum _{l=0}^{i}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2l}\right. \nonumber \\&\left. \quad +\left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i+1-2l}\right) \\&\quad +\sum _{l=0}^{i-1}{\left( -\lambda _1\mu _1\right) ^{l+1} \left( \left( {\begin{array}{c}2i-2-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2-2l}+\left( {\begin{array}{c}2i-2-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i-1-2l}\right) }\Bigg )\\ \end{aligned}$$
$$\begin{aligned}&=\left( \frac{-1}{\mu _1}\right) ^{2i+1}\Bigg (\sum _{l=0}^{k}\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2l}\right. \nonumber \\&\left. \quad +\left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i+1-2l}\right) \\&\quad +\sum _{l=1}^{i}{\left( -\lambda _1\mu _1\right) ^{l} \left( \left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2l}+\left( {\begin{array}{c}2i-1-l\\ l-2\end{array}}\right) \left( A_1\right) ^{2i+1-2l}\right) }\Bigg )\\&=\left( \frac{-1}{\mu _1}\right) ^{2i+1}\Bigg ((-\lambda _1\mu _1)^0\left( \left( {\begin{array}{c}2i-1\\ 0\end{array}}\right) A_1^0\left( A_1\right) ^{2i}+\left( {\begin{array}{c}2i-1\\ -1\end{array}}\right) \left( A_1\right) ^{2i+1}\right) \\ \end{aligned}$$
$$\begin{aligned}&\quad +\sum _{l=1}^{i}{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-1-l\\ l\end{array}}\right) +\left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) \right) A_1^0\left( A_1\right) ^{2i-2l}}\\&+\sum _{l=1}^{i}{\left( -\lambda _1\mu _1\right) ^l\left( \left( {\begin{array}{c}2i-1-l\\ l-1\end{array}}\right) +\left( {\begin{array}{c}2i-1-l\\ l-2\end{array}}\right) \right) \left( A_1\right) ^{2i+1-2l}}\Bigg )\\&=\left( \frac{-1}{\mu _1}\right) ^{2i+1}\sum _{l=0}^{i}{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}2i-l\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{2i-2l}+\left( {\begin{array}{c}2i-l\\ l-1\end{array}}\right) \left( A_1\right) ^{2i+1-2l}\right) }\\&=\left( \frac{-1}{\mu _1}\right) ^{k}\sum _{l=0}^{\lfloor {\frac{k}{2}}\rfloor }{\left( -\lambda _1\mu _1\right) ^l \left( \left( {\begin{array}{c}k-l-1\\ l\end{array}}\right) A_1^0\left( A_1\right) ^{k-2l-1}+\left( {\begin{array}{c}k-l-1\\ l-1\end{array}}\right) \left( A_1\right) ^{k-2l}\right) }. \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avrachenkov, K., Perel, E. & Yechiali, U. Finite-buffer polling systems with threshold-based switching policy. TOP 24, 541–571 (2016). https://doi.org/10.1007/s11750-015-0408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-015-0408-6

Keywords

Mathematics Subject Classification

Navigation