Skip to main content
Log in

Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

A flexible model called the max-mixture model has been introduced for modeling situations where the extremal dependence structure type may vary with distance. In this paper, we propose a novel estimation procedure for spatial max-mixture model parameters. Our procedure is based on the madogram, a dependence measure used in geostatistics to describe spatial structures. A nonlinear least squares minimization procedure is applied to obtain the estimators for extremal dependence functions. A simulation study shows that the proposed procedure works well for these models. In an analysis of monthly maxima of daily rainfall data collected over the East of Australia, we implement the proposed estimation procedure for diagnostic and confirmatory purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abu-Awwad A-F, Maume-Deschamps V, Ribereau P (2019) Censored pairwise likelihood-based tests for mixture parameter of spatial max-mixture models. Accepted for publication to Revista de Investigacion Operacional. arXiv:1801.00981

  • Ahmed M, Maume-Deschamps V, Ribereau P, Vial C (2017) A semi-parametric estimation for max-mixture spatial processes. Submitted for publication

  • Antoniadis A, Berruyer J, René C (1992) Régression non linéaire et applications. Economica, Paris

    Google Scholar 

  • Arbia G, Lafratta G (2002) Anisotropic spatial sampling designs for urban pollution. J R Stat Soc Ser C (Appl Stat) 51(2):223–234

    Article  MathSciNet  Google Scholar 

  • Bacro JN, Gaëtan C, Toulemonde G (2016) A flexible dependence model for spatial extremes. J Stat Plan Inference 172:36–52

    Article  MathSciNet  Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J (2004) Statistics of extremes: theory and applications. Wiley, New York

    Book  Google Scholar 

  • Bel L, Bacro JN, Lantuéjoul C (2008) Assessing extremal dependence of environmental spatial fields. Environmetrics 19:163–182

    Article  MathSciNet  Google Scholar 

  • Blanchet J, Davison AC (2011) Spatial modeling of extreme snow depth. Ann Appl Stat 5:1699–1725

    Article  MathSciNet  Google Scholar 

  • Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14:732–739

    Article  MathSciNet  Google Scholar 

  • Buhl S, Davis RA, Klüppelberg C, Steinkohl C (2016) Semiparametric estimation for isotropic max-stable space-time processes. Submitted for publication

  • Capéraà P, Fougères AL, Genest C (1997) A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84:567–577

    Article  MathSciNet  Google Scholar 

  • Castruccio S, Huser R, Genton MG (2016) High-order composite likelihood inference for max-stable distributions and processes. J Comput Gr Stat 25:1212–1229

    Article  MathSciNet  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2:339–365

    Article  Google Scholar 

  • Cooley D, Naveau P, Poncet P (2006) Variograms for spatial max-stable random fields. In: Bertail P, Soulier P, Doukhan P (eds) Dependence in probability and statistics. Lecture notes in statistics, vol 187, chap 17. Springer, New York, pp 373–390

  • Davison AC, Gholamrezaee MM (2012) Geostatistics of extremes. Proc R Soc A 468:581–608

    Article  MathSciNet  Google Scholar 

  • Davison AC, Huser R, Thibaud E (2013) Geostatistics of dependent and asymptotically independent extremes. Math Geosci 45:511–529

    Article  MathSciNet  Google Scholar 

  • De Haan L (1984) A spectral representation for max-stable processes. Ann Probab 12:1194–1204

    Article  MathSciNet  Google Scholar 

  • De Haan L, Pereira A (2006a) Extreme value theory: an introduction. Springer, New York

    Book  Google Scholar 

  • De Haan L, Pereira TT (2006b) Spatial extremes: models for the stationary case. Ann Stat 34:146–168

    Article  MathSciNet  Google Scholar 

  • Ecker MD, Gelfand AE (2003) Spatial modeling and prediction under stationary non-geometric range anisotropy. Environ Ecol Stat 10(2):165–178

    Article  MathSciNet  Google Scholar 

  • Genton MG, Ma Y, Sang H (2011) On the likelihood function of Gaussian max-stable processes. Biometrika 98:481–488

    Article  MathSciNet  Google Scholar 

  • Guillou A, Naveau P, Schorgen A (2014) Madogram and asymptotic independence among maxima. REVSTAT Stat J 12(2):119–134

    MathSciNet  MATH  Google Scholar 

  • Huser R, Davison AC (2013) Composite likelihood estimation for the Brown–Resnick process. Biometrika 100:511–518

    Article  MathSciNet  Google Scholar 

  • Huser R, Davison AC (2014) Space-time modelling of extreme events. J R Stat Soc Ser B (Stat Methodol) 76:439–461

    Article  MathSciNet  Google Scholar 

  • Kabluchko Z, Schlather M, De Haan L (2009) Stationary max-stable fields associated to negative definite functions. Ann Probab 37:2042–2065

    Article  MathSciNet  Google Scholar 

  • Ledford AW, Tawn JA (1996) Statistics for near independence in multivariate extreme values. Biometrika 83:169–187

    Article  MathSciNet  Google Scholar 

  • Ledford AW, Tawn JA (1997) Modelling dependence within joint tail regions. J R Stat Soc Ser B (Stat Methodol) 59(2):475–499

    Article  MathSciNet  Google Scholar 

  • Lindsay BG (1988) Composite likelihood methods. Contemp Math 80:221–239

    Article  MathSciNet  Google Scholar 

  • Naveau P, Guillou A, Cooley D, Diebolt J (2009) Modelling pairwise dependence of maxima in space. Biometrika 96:1–17

    Article  MathSciNet  Google Scholar 

  • Opitz T (2013) Extremal t processes: elliptical domain of attraction and a spectral representation. J Multivar Anal 122:409–413

    Article  MathSciNet  Google Scholar 

  • Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat Assoc 105:263–277

    Article  MathSciNet  Google Scholar 

  • Ribatet M (2015) SpatialExtremes: R Package, Version 2.0-2. http://spatialextremes.r-forge.rproject.org/. Accessed 2 July 2017

  • Schlather M (2002) Models for stationary max-stable random fields. Extremes 5:33–44

    Article  MathSciNet  Google Scholar 

  • Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90:139–156

    Article  MathSciNet  Google Scholar 

  • Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math 11:195–210

    Article  MathSciNet  Google Scholar 

  • Smith RL (1990) Max-stable processes and spatial extremes. Unpublished manuscript 205

  • Thibaud E, Mutzner R, Davison AC (2013) Threshold modeling of extreme spatial rainfall. Water Resour Res 49:4633–4644

    Article  Google Scholar 

  • Varin C (2008) On composite marginal likelihoods. AStA Adv Stat Anal 92:1–28

    Article  MathSciNet  Google Scholar 

  • Varin C, Vidoni P (2005) A note on composite likelihood inference and model selection. Biometrika 92:519–528

    Article  MathSciNet  Google Scholar 

  • Varin C, Reid N, Firth D (2011) An overview of composite likelihood methods. Stat Sin 21:5–42

    MathSciNet  MATH  Google Scholar 

  • Wadsworth JL, Tawn JA (2012) Dependence modelling for spatial extremes. Biometrika 99:253–272

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). It was also partly supported by the CERISE LEFE-INSU project. We would like to thank Jean-Noël Bacro, Carlo Gaetan, and Gwladys Toulemonde for providing their C codes which used as a preliminary version for parametric estimation using composite likelihood. We are also very grateful to an editor and to two anonymous reviewers for many helpful comments that have led to considerable improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abu-Awwad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Awwad, A., Maume-Deschamps, V. & Ribereau, P. Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool. TEST 29, 479–522 (2020). https://doi.org/10.1007/s11749-019-00663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-019-00663-5

Keywords

Mathematics Subject Classification

Navigation