Skip to main content
Log in

Empirical copulas for consecutive survival data

Copulas in survival analysis

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In the analysis of medical data the whole lifetime is often split into pieces characterizing the various stages in the development of a chronical disease. In this paper we provide a nonparametric copula function estimator for two consecutive survival data which are subject to truncation and right censorship. We also discuss an extension of Spearman’s Rho and Kendall’s Tau to the present situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur RR (1966) A note on quantiles in large samples. Ann Math Stat 37:577–580

    Article  MathSciNet  MATH  Google Scholar 

  • Brookmeyer R, Gail MH (1994) AIDS epidemiology. A quantitative approach. Oxford University Press, New York

    Google Scholar 

  • de la Peña VH, Giné E (1999) Decoupling: from dependence to independence. Springer, New York

    Book  Google Scholar 

  • Deheuvels P (1979) Propriétés d’existence et propriétés topologiques des fonctions de dépendance avec applications à la convergence des types pour les lois multivariées. C R Acad Sci Paris, Ser A 288:145–148

    MathSciNet  MATH  Google Scholar 

  • Deheuvels P (1981) A Kolmogorov–Smirnov type test for independence and multivariate samples. Rev Roum Math Pures Appl Tome XXVI:213–226

    MathSciNet  Google Scholar 

  • Fermanian JD, Radulovic D, Wegkamp M (2004) Weak convergence of empirical copula processes. Bernoulli 10:847–860

    Article  MathSciNet  MATH  Google Scholar 

  • Gaenssler P (1983) Empirical processes. IMS lecture notes—monograph series, vol 3

    Google Scholar 

  • Gaenssler P, Stute W (1987) Seminar on empirical processes. DMV seminar, vol 9. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2004) Tests of independence and randomness based on the empirical copula process. Test 13:335–369

    Article  MathSciNet  MATH  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213

    Article  MATH  Google Scholar 

  • Kruskal WH (1958) Ordinal measures of association. J Am Stat Assoc 53:814–861

    Article  MathSciNet  MATH  Google Scholar 

  • Li DX (2000) On default correlation: a copula function approach. J Fixed Income 9:43–45

    Article  Google Scholar 

  • Lynden-Bell D (1971) A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon Not R Astron Soc Lett 155:95–118

    Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Omelka M, Gijbels I, Veraverbeke N (2009) Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann Math Stat 37:3023–3058

    Article  MathSciNet  MATH  Google Scholar 

  • Ruymgaart FH (1978) Asymptotic theory of rank tests for independence. Math. centre tracts, vol 43. Amsterdam

    Google Scholar 

  • Schweizer B, Wolff EF (1981) On nonparametric measures of dependence for random variables. Ann Stat 9:879–885

    Article  MathSciNet  MATH  Google Scholar 

  • Segers J (2012) Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18:764–782

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    MathSciNet  Google Scholar 

  • Strzalkowska-Kominiak E (2008) The statistical analysis of truncated and censored data under serial dependence. Dissertation, University of Giessen, Germany

  • Strzalkowska-Kominiak E, Stute W (2010a) The statistical analysis of consecutive survival data under serial dependence. J Nonparametr Stat 22:585–597

    Article  MathSciNet  MATH  Google Scholar 

  • Strzalkowska-Kominiak E, Stute W (2010b) On the probability of holes in truncated samples. J Stat Plan Inference 140:1519–1528

    Article  MathSciNet  MATH  Google Scholar 

  • Strzalkowska-Kominiak E, Stute W (2012) Nonparametric regression for consecutive survival data. South African J Stat 46:357–376

    MathSciNet  Google Scholar 

  • Stute W (1982) The oscillation behavior of empirical processes. Ann Probab 10:86–107

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W (1984) The oscillation behavior of empirical processes: the multivariate case. Ann Probab 12:361–379

    Article  MathSciNet  MATH  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Ewa Strzalkowska-Kominiak acknowledges financial support from a Juan de la Cierva scholarship and Grants MTM2008-00166 and MTM2011-22392 from the Spanish Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Strzalkowska-Kominiak.

Appendix

Appendix

The following result will be needed in the proof of Theorem 2 and applied to the marginals F 1n and F 2n of F n . It has been formulated for general distribution function estimators and their quantiles. For the special case of a classical univariate empirical d.f., Lemma A allows for remarkable extensions since then the oscillation behavior of empirical processes yields exact almost sure bounds for the remainder terms leading to the famous Bahadur (1966) representation of empirical quantiles for i.i.d. data. See also Stute (1982). Together with oscillation results for multivariate empirical processes, see Stute (1984), Gaenssler and Stute (1987) discussed bounds for the remainders of the empirical copula process. For the estimators discussed in this paper only tightness but no sharp oscillation bounds are available so far. Therefore, for the sake of completeness, we included Lemma A in a form which summarizes the conditions needed for distributional convergence and an in-probability representation without bounds.

Lemma A

Let \(\tilde{F}_{n}\) be univariate nondecreasing estimators of a distribution function \(\tilde{F}\) such that the processes

$$\tilde{\alpha}_n = n^{1/2} [\tilde{F}_n - \tilde{F}] $$

are asymptotically C-tight on compact subsets of the real line. Assume furthermore that \(\tilde{F}\) is continuously differentiable at \(\tilde{F}^{-1}(u)\) with

$$\tilde{F}'\bigl(\tilde{F}^{-1}(u)\bigr) > 0 . $$

Then we have

$$ \tilde{F}'\bigl(\tilde{F}^{-1}(u)\bigr) n^{1/2} \bigl[ \tilde{F}_n^{-1}(u) - \tilde{F}^{-1}(u) \bigr] = - \tilde{\alpha}_n \bigl(\tilde{F}^{-1}(u)\bigr) + o_{\mathbb{P}}(1) . $$

The last representation holds uniformly in u whenever u varies in compact subsets of (0,1).

Proof

Since \(\tilde{\alpha}_{n}\) is asymptotically C-tight, we have \(\tilde{F}_{n} \to\tilde{F}\) on compacta, in probability. Under the assumed regularity conditions at \(\tilde{F}^{-1}(u)\), we get

$$\tilde{F}_n^{-1}(u) \to\tilde{F}^{-1}(u)\quad \mbox{in probability}. $$

By the assumed tightness,

$$\tilde{\alpha}_n \bigl( \tilde{F}_n^{-1}(u) \bigr) - \tilde{\alpha}_n \bigl(\tilde{F}^{-1}(u)\bigr) \to0\quad \mbox{in probability} . $$

The last difference, however, equals

$$n^{1/2} \bigl[ \tilde{F}_n\bigl(\tilde{F}_n^{-1}(u) \bigr) - \tilde{F}\bigl(\tilde{F}_n^{-1}(u)\bigr) - \tilde{F}_n\bigl(\tilde{F}^{-1}(u)\bigr) + \tilde{F}\bigl(\tilde{F}^{-1}(u)\bigr) \bigr] . $$

We also have

$$\tilde{F}_n\bigl(\tilde{F}_n^{-1}(u)\bigr) = u\quad \mbox{within}\ o_{\mathbb{P}}\bigl(n^{-1/2}\bigr) $$

and

$$\tilde{F}\bigl(\tilde{F}^{-1}(u)\bigr) = u . $$

Conclude that

$$n^{1/2} \bigl[ \tilde{F}\bigl(\tilde{F}^{-1}(u)\bigr) - \tilde{F}\bigl(\tilde{F}_n^{-1}(u)\bigr) \bigr] = \tilde{\alpha}_n \bigl(\tilde{F}^{-1}(u)\bigr) + o_{\mathbb{P}}(1) . $$

By the mean value theorem, the left-hand sided is asymptotically equal to

$$\tilde{F}'\bigl(\tilde{F}^{-1}(u)\bigr) n^{1/2} \bigl[\tilde{F}^{-1}(u) - \tilde{F}_n^{-1}(u)\bigr] . $$

This completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strzalkowska-Kominiak, E., Stute, W. Empirical copulas for consecutive survival data. TEST 22, 688–714 (2013). https://doi.org/10.1007/s11749-013-0339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-013-0339-1

Keywords

Mathematics Subject Classification

Navigation