Skip to main content

Advertisement

Log in

New PET/CT criterion for nodal staging in non-small cell lung cancer: measurement of the ratio of section area of standard uptake values ≥2.5/lymph node section area

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Background

The aim of the present study was to use surgical and histological results to develop a simple noninvasive technique for improving nodal staging using preoperative PET/CT in patients with resectable non-small cell lung cancer (NSCLC).

Methods

Preoperative PET/CT findings (163 patients) and pathological diagnoses after surgical resection were evaluated. Using PET/CT images, lymph node section area (SA), the maximum standardized uptake value (SUVmax), SA of SUV ≥2.5 and ≥3.0 were drawn freehand and measured using caliper software. Receiver operating characteristic (ROC) curves were then used to analyze those data.

Results

Based on ROC analyses, the cut-off values for SA of SUV ≥2.5, SA of SUV ≥3.0, SUV ≥2.5 SA/node SA and SUV ≥3.0 SA/node SA for diagnosis of lymph node metastasis were 200 mm2, 30 mm2, 1.0 and 0.4. SUV ≥2.5 SA/node SA ≥1.0 had the highest negative predictive value, and the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of nodal staging were 61.1, 73.4, 36.7, 88.2 and 70.9%.

Conclusions

When diagnosing nodal staging based a lymph node SUV ≥2.5 SA/node SA ratio of ≥1.0, it can be an effective criterion for use to determine surgical indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

PPV:

Positive predictive value

SUVmax:

Maximum standardized uptake value

FDG:

18F-2-deoxy-2-fluoro-d-glucose

UICC:

Union Internationale Contre le Cancer

ROI:

Region of interest

SA:

Section area

ROC:

Receiver operating characteristic

AUC:

The areas under receiver operating characteristic curves

NPV:

Negative predictive value

FLT:

3′-Deoxy-3′-18F-fluorothymidine

4DST:

4′-[Methyl-11C]-thiothymidine

BAC:

Bronchoalveolar cell carcinoma

References

  1. Scott WJ, Howington J, Feigenberg S, Movsas B, Pisters K. Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132:234S–42S.

    Article  PubMed  Google Scholar 

  2. Azzoli CG, Park BJ, Pao W, Zakowski M, Kris MG. Molecularly tailored adjuvant chemotherapy for resected non-small cell lung cancer: a time for excitement and equipoise. J Thorac Oncol. 2008;3:84–93.

    Article  PubMed  Google Scholar 

  3. Fukui T, Mitsudomi T. Small peripheral lung adenocarcinoma: clinicopathological features and surgical treatment. Surg Today. 2010;40:191–8.

    Article  PubMed  Google Scholar 

  4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  5. Al-Shahrabani F, Vallböhmer D, Angenendt S, Knoefel WT. Surgical strategies in the therapy of non-small cell lung cancer. World J Clin Oncol. 2014;5:595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res. 2014;3:242–9.

    PubMed  PubMed Central  Google Scholar 

  7. Imai K, Minamiya Y, Saito H, Motoyama S, Sato Y, Ito A, et al. Diagnostic imaging in the preoperative management of lung cancer. Surg Today. 2014;44:1197–206.

    Article  PubMed  Google Scholar 

  8. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–19.

    Article  PubMed  Google Scholar 

  9. Billé A, Pelosi E, Skanjeti A, Arena V, Errico L, Borasio P, et al. Preoperative intrathoracic lymph node staging in patients with non-small-cell lung cancer: accuracy of integrated positron emission tomography and computed tomography. Eur J Cardiothorac Surg. 2009;36:440–5.

    Article  PubMed  Google Scholar 

  10. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007;17:23–32.

    Article  PubMed  Google Scholar 

  11. Al-Sarraf N, Gately K, Lucey J, Wilson L, McGovern E, Young V. Lymph node staging by means of positron emission tomography is less accurate in non-small cell lung cancer patients with enlarged lymph nodes: analysis of 1145 lymph nodes. Lung Cancer. 2008;60:62–8.

    Article  PubMed  Google Scholar 

  12. Lv YL, Yuan DM, Wang K, Miao XH, Qian Q, Wei SZ, et al. Diagnostic performance of integrated positron emission tomography/computed tomography for mediastinal lymph node staging in non-small cell lung cancer: a bivariate systematic review and meta-analysis. J Thorac Oncol. 2011;6:1350–8.

    Article  PubMed  Google Scholar 

  13. Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.

    Article  PubMed  Google Scholar 

  14. Weng E, Tran L, Rege S, Safa A, Sadeghi A, Juillard G, et al. Accuracy and clinical impact of mediastinal lymph node staging with FDG-PET imaging in potentially resectable lung cancer. Am J Clin Oncol. 2000;23:47–52.

    Article  CAS  PubMed  Google Scholar 

  15. Changlai SP, Tsai SC, Chou MC, Ho YJ, Kao CH. Whole body 18F-2-deoxyglucose positron emission tomography to restage non-small cell lung cancer. Oncol Rep. 2001;8:337–9.

    CAS  PubMed  Google Scholar 

  16. Nakamura K, Saji H, Nakajima R, Okada M, Asamura H, Shibata T, et al. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn J Clin Oncol. 2010;40:271–4.

    Article  PubMed  Google Scholar 

  17. Jones DR, Stiles BM, Denlinger CE, Antippa P, Daniel TM. Pulmonary segmentectomy: results and complications. Ann Thorac Surg. 2003;76:343–9.

    Article  PubMed  Google Scholar 

  18. Okada M, Koike T, Higashiyama M, Yamato Y, Kodama K, Tsubota N. Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg. 2006;132:769–75.

    Article  PubMed  Google Scholar 

  19. Schuchert MJ, Pettiford BL, Keeley S, D’Amato TA, Kilic A, Close J, et al. Anatomic segmentectomy in the treatment of stage I non-small cell lung cancer. Ann Thorac Surg. 2007;84:926–33.

    Article  PubMed  Google Scholar 

  20. Kudo S, Imai K, Ishiyama K, Hashimoto M, Saito H, Motoyama S, et al. New CT criteria for nodal staging in non-small cell lung cancer. Clin Imaging. 2014;38:448–53.

    Article  PubMed  Google Scholar 

  21. Sobin LH, Gospodarowicz MK, Wittekind Ch (eds). TNM classification of malignant tumours, 7th Edition. New York: Wiley-Blackwell, 2009.

    Google Scholar 

  22. Ryu JS, Choi NC, Fischman AJ, Lynch TJ, Mathisen DJ. FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer. 2002;35:179–87.

    Article  PubMed  Google Scholar 

  23. Moloney F, Ryan D, McCarthy L, McCarthy J, Burke L, Henry MT, et al. Increasing the accuracy of18F-FDG PET/CT interpretation of “mildly positive” mediastinal nodes in the staging of non-small cell lung cancer. Eur J Radiol. 2014;83:843–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hanley JA, McNeil BJ. A method of comparing the area under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–43.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (1 cm), intermediate (1 to 3 cm), and large (3 cm) lymph node lesions. Chest. 2000;117:773–8.

    Article  CAS  PubMed  Google Scholar 

  26. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18 F-FDG. J Nucl Med. 2003;44:1426–31.

    CAS  PubMed  Google Scholar 

  27. Cobben DC, Elsinga PH, Hoekstra HJ, Suurmeijer AJ, Vaalburg W, Maas B, et al. Is 18 F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med. 2004;45:1677–82.

    CAS  PubMed  Google Scholar 

  28. Buck AK, Hetzel M, Schirrmeister H, Halter G, Möller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging. 2005;32:525–33.

    Article  PubMed  Google Scholar 

  29. Yamamoto Y, Nishiyama Y, Kimura N, Ishikawa S, Okuda M, Bandoh S, et al. Comparison of (18)F-FLT PET and (18)F-FDG PET for preoperative staging in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2008;35:236–45.

    Article  CAS  PubMed  Google Scholar 

  30. Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, Weber WA. Evaluation of thoracic tumor with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest. 2006;129:393–401.

    Article  PubMed  Google Scholar 

  31. Minamimoto R, Toyohara J, Ito H, Seike A, Miyata Y, Morooka M, et al. A pilot study of 4′-[methyl-11C]-thiothymidine PET/CT for detection of regional lymph node metastasis in non-small cell lung cancer. EJNMMI Res. 2014;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Toyohara J, Sakata M, Oda K, Ishii K, Ishiwata K. Longitudinal observation of [11C] 4DST uptake in turpentine-induced inflammatory tissue. Nucl Med Biol. 2013;40:240–4.

    Article  CAS  PubMed  Google Scholar 

  33. Heyneman LE, Patz EF. PET imaging in patients with bronchioloalveolar cell carcinoma. Lung Cancer. 2002;38:261–6.

    Article  PubMed  Google Scholar 

  34. Daniels CE, Lowe VJ, Aubry MC, Allen MS, Jett JR. The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest. 2007;131:255–60.

    Article  PubMed  Google Scholar 

  35. Booth K, Hanna GG, McGonigle N, McManus KG, McGuigan J, O’Sullivan J, et al. The mediastinal staging accuracy of 18F-Fluorodeoxyglycose positron emission tomography/computed tomography in non-small cell lung cancer with variable time intervals to surgery. Ulster Med J. 2013;82:75–81.

    PubMed  PubMed Central  Google Scholar 

  36. Kim DH, Song BI, Hong CM, Jeong SY, Lee SW, Lee J, et al. Metabolic parameters using 18F-FDG PET/CT correlate with occult lymph node metastasis in squamous cell lung carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:2051–7.

    Article  CAS  PubMed  Google Scholar 

  37. Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koëter GH, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.

    Article  CAS  PubMed  Google Scholar 

  38. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, Stallaert RA, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. The Lancet. 2002;359:1388–93.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Profs. Hiroshi Nanjo (Department of Pathology, Akita University Graduate School of Medicine) and Akiteru Goto (Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine) for suggesting pathological diagnoses. And we thank Prof. Katsuyuki Murata (Department of Environmental Health Sciences, Akita University Graduate School of Medicine) for suggesting statistics.

Author contributions

SY collected and analyzed the data. Imai K designed the research, analyzed data and wrote the paper. Ishiyama K, MS, SH, SY, KH, and FS supported this research and helped to collect the data. HM participated in this study’s design and coordination. MY supervised the research. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Imai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, Y., Imai, K., Ishiyama, K. et al. New PET/CT criterion for nodal staging in non-small cell lung cancer: measurement of the ratio of section area of standard uptake values ≥2.5/lymph node section area. Gen Thorac Cardiovasc Surg 65, 350–357 (2017). https://doi.org/10.1007/s11748-017-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-017-0756-2

Keywords

Navigation