Skip to main content

Advertisement

Log in

Ratio of Mediastinal Lymph Node SUV to Primary Tumor SUV in 18F-FDG PET/CT for Nodal Staging in Non-Small-Cell Lung Cancer

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Following determination of the maximum standardized uptake values (SUVmax) of the mediastinal lymph nodes (SUV-LN) and of the primary tumor (SUV-T) on 18F-FDG PET/CT in patients with non-small-cell lung cancer (NSCLC), the aim of the study was to determine the value of the SUV-LN/SUV-T ratio in lymph node staging in comparison with that of SUV-LN.

Methods

We retrospectively reviewed a total of 289 mediastinal lymph node stations from 98 patients with NSCLC who were examined preoperatively for staging and subsequently underwent pathologic studies of the mediastinal lymph nodes. We determined SUV-LN and SUV-R for each lymph node station on 18F-FDG PET/CT and then classified each station into one of three groups based on SUV-T (low, medium and high SUV-T groups). Diagnostic performance was assessed based on receiver operating characteristic (ROC) curve analysis, and the optimal cut-off values that would best discriminate metastatic from benign lymph nodes were determined for each method.

Results

The average of SUV-R of malignant lymph nodes was significantly higher than that of benign lymph nodes (0.79 ± 0.45 vs. 0.36 ± 0.23, P < 0.0001). In the ROC curve analysis, the area under the curve (AUC) of SUV-R was significantly higher than that of SUV-LN in the low SUV-T group (0.885 vs. 0.810, P = 0.019). There were no significant differences between the AUCs of SUV-LN and of SUV-R in the medium and high SUV-T groups. The optimal cut-off value for SUV-R in the low SUV-T group was 0.71 (sensitivity 87.5 %, specificity 85.9 %).

Conclusions

The SUV-R performed well in distinguishing between metastatic and benign lymph nodes. In particular, SUV-R was found to have a better diagnostic performance than SUV-LN in the low SUV-T group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s – meta-analytic comparison of PET and CT. Radiology. 1999;213:530–6.

  2. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. Non-small cell lung cancer, version 6.2015. J Natl Compr Cancer Netw. 2015;13:515–24.

    Article  Google Scholar 

  3. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e211S–50S.

    Article  PubMed  Google Scholar 

  4. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e142S–65S.

    Article  PubMed  Google Scholar 

  5. Ost DE, Yeung SC, Tanoue LT, Gould MK. Clinical and organizational factors in the initial evaluation of patients with lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e121S–41.

  6. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  7. An YS, Sun JS, Park KJ, Hwang SC, Park KJ, Sheen SS, et al. Diagnostic performance of (18)F-FDG PET/CT for lymph node staging in patients with operable non-small-cell lung cancer and inflammatory lung disease. Lung. 2008;186:327–36.

    Article  PubMed  Google Scholar 

  8. Turkmen C, Sonmezoglu K, Toker A, Yilmazbayhan D, Dilege S, Halac M, et al. The additional value of FDG PET imaging for distinguishing N0 or N1 from N2 stage in preoperative staging of non-small cell lung cancer in region where the prevalence of inflammatory lung disease is high. Clin Nucl Med. 2007;32:607–12.

    Article  PubMed  Google Scholar 

  9. Chao F, Zhang H. PET/CT in the staging of the non-small-cell lung cancer. J Biomed Biotechnol. 2012;2012:783739.

    PubMed  PubMed Central  Google Scholar 

  10. Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology. 1997;202:441–6.

    Article  CAS  PubMed  Google Scholar 

  11. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology. 1994;191:371–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, et al. 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med. 2007;48:1761–6.

    Article  PubMed  Google Scholar 

  13. Lee AY, Choi SJ, Jung KP, Park JS, Lee SM, Bae SK. Characteristics of metastatic mediastinal lymph nodes of non-small cell lung cancer on preoperative F-18 FDG PET/CT. Nucl Med Mol Imaging. 2014;48:41–6.

    Article  CAS  PubMed  Google Scholar 

  14. Cerfolio RJ, Bryant AS. Ratio of the maximum standardized uptake value on FDG-PET of the mediastinal (N2) lymph nodes to the primary tumor may be a universal predictor of nodal malignancy in patients with nonsmall-cell lung cancer. Ann Thorac Surg. 2007;83:1826–9. discussion 1829–30.

    Article  PubMed  Google Scholar 

  15. Budiawan H, Cheon GJ, Im HJ, Lee SJ, Paeng JC, Kang KW, et al. Heterogeneity analysis of (18)F-FDG uptake in differentiating between metastatic and inflammatory lymph nodes in adenocarcinoma of the lung: comparison with other parameters and its application in a clinical setting. Nucl Med Mol Imaging. 2013;47:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cirak AK, Ceylan KC, Akpinar D, Kaya SO, Koparal H. Are ratio of lymph node to primary focus SUV-max and PET/CT 18FDG standard uptake value of lymph nodes meaningful in staging non-small cell lung cancer? Int J Hematol Oncol. 2011;21:217–22.

    Article  Google Scholar 

  17. Kumar A, Dutta R, Kannan U, Kumar R, Khilnani GC, Gupta SD. Evaluation of mediastinal lymph nodes using F-FDG PET-CT scan and its histopathologic correlation. Ann Thorac Med. 2011;6:11–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.

    Article  PubMed  Google Scholar 

  19. Keyes Jr JW. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.

    PubMed  Google Scholar 

  20. Westerterp M, Pruim J, Oyen W, Hoekstra O, Paans A, Visser E, et al. Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging. 2007;34:392–404.

    Article  PubMed  Google Scholar 

  21. Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.

    Article  PubMed  Google Scholar 

  22. Iskender I, Kadioglu SZ, Kosar A, Atasalihi A, Kir A. Is there any maximum standardized uptake value variation among positron emission tomography scanners for mediastinal staging in non-small cell lung cancer? Interact Cardiovasc Thorac Surg. 2011;12:965–9.

    Article  PubMed  Google Scholar 

  23. Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):178S–201S.

    Article  PubMed  Google Scholar 

  24. Futamura M, Asano T, Kobayashi K, Morimitsu K, Nawa M, Kanematsu M, et al. Prediction of macrometastasis in axillary lymph nodes of patients with invasive breast cancer and the utility of the SUV lymph node/tumor ratio using FDG-PET/CT. World J Surg Oncol. 2015;13:49.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park J, Byun BH, Noh WC, Lee SS, Kim HA, Kim EK, et al. Lymph node to primary tumor SUV ratio by 18F-FDG PET/CT and the prediction of axillary lymph node metastases in breast cancer. Clin Nucl Med. 2014;39:e249–53.

    Article  PubMed  Google Scholar 

  26. Vesselle H, Salskov A, Turcotte E, Wiens L, Schmidt R, Jordan D, et al. Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol. 2008;3:971–8.

    Article  PubMed  Google Scholar 

  27. Medford AR, Bennett JA, Free CM, Agrawal S. Mediastinal staging procedures in lung cancer: EBUS, TBNA and mediastinoscopy. Curr Opin Pulm Med. 2009;15:334–42.

    Article  PubMed  Google Scholar 

  28. Clementsen PF, Skov BG, Vilmann P, Krasnik M. Endobronchial ultrasound-guided biopsy performed under optimal conditions in patients with known or suspected lung cancer may render mediastinoscopy unnecessary. J Bronchology Interv Pulmonol. 2014;21:21–5.

    Article  PubMed  Google Scholar 

  29. Ernst A, Anantham D, Eberhardt R, Krasnik M, Herth FJ. Diagnosis of mediastinal adenopathy-real-time endobronchial ultrasound guided needle aspiration versus mediastinoscopy. J Thorac Oncol. 2008;3:577–82.

    Article  PubMed  Google Scholar 

  30. Navani N, Lawrence DR, Kolvekar S, Hayward M, McAsey D, Kocjan G, et al. Endobronchial ultrasound-guided transbronchial needle aspiration prevents mediastinoscopies in the diagnosis of isolated mediastinal lymphadenopathy: a prospective trial. Am J Respir Crit Care Med. 2012;186:255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yasufuku K, Pierre A, Darling G, de Perrot M, Waddell T, Johnston M, et al. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J Thorac Cardiovasc Surg. 2011;142:1393–400.e1.

    Article  PubMed  Google Scholar 

  32. Rintoul RC, Tournoy KG, El Daly H, Carroll NR, Buttery RC, van Kralingen K, et al. EBUS-TBNA for the clarification of PET positive intra-thoracic lymph nodes – an international multi-centre experience. J Thorac Oncol. 2009;4:44–8.

    Article  PubMed  Google Scholar 

  33. Herth FJ, Ernst A, Eberhardt R, Vilmann P, Dienemann H, Krasnik M. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically normal mediastinum. Eur Respir J. 2006;28:910–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungeun Kim.

Ethics declarations

Conflicts of Interest

Jaehyuk Cho, Jae Gol Choe, Kisoo Pahk, Sunju Choi, Hye Ryeong Kwon, Jae Seon Eo, Hyo Jung Seo, Chulhan Kim, and Sungeun Kim declare that they have no conflicts of interest.

Ethical Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the 1975 Declaration of Helsinki, as revised in 2000. Informed consent was waived by the IRB considering the retrospective nature of the analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J., Choe, J.G., Pahk, K. et al. Ratio of Mediastinal Lymph Node SUV to Primary Tumor SUV in 18F-FDG PET/CT for Nodal Staging in Non-Small-Cell Lung Cancer. Nucl Med Mol Imaging 51, 140–146 (2017). https://doi.org/10.1007/s13139-016-0447-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0447-4

Keywords

Navigation