Skip to main content
Log in

Detection of 430 Fatty Acid Methyl Esters from a Transesterified Butter Sample

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Milk fat is known to contain one of the highest number of fatty acids of all edible oils. Some of these fatty acids are known to be valuable (e.g. conjugated linoleic acids, furan fatty acid) and other as undesirable (e.g. saturated and some trans-fatty acids) food ingredients. However, a comprehensive picture on the presence of many trace fatty acids has not been achieved. For this reason we have developed an analysis scheme based on the conversion of the fatty acids into methyl esters. The fatty acid methyl esters were then fractionated by urea complexation. Both the filtrate of the urea complexation (~4 % of the sample weight) and the original sample were fractionated by high-speed counter-current chromatography (HSCCC). The resulting fractions were analyzed by GC/MS analysis. With this method 430 fatty acids were detected in one single butter sample. More than 230 fatty acids had two or more double bonds. In addition to the widely known spectrum of fatty acids we also detected a range of cyclohexyl fatty acids (five homologues) and methyl-branched fatty acids (including short chain and even-numbered anteiso-fatty acids), conjugated tetradecadienoic acids along with the novel ω-oxo-fatty acids (seven homologues). The reported relative retention time on the polar column may serve as a data base for the screening of other samples for this profusion of fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

9D5/F-VII:

9-(3,4-Dimethyl-5-pentylfuran-2-yl)-nonanoic acid

9M5/F-III:

9-(3-Methyl-5-pentylfuran-2-yl)-nonanoic acid

11D5/F-VIII:

11-(3,4-Dimethyl-5-pentylfuran-2-yl)-undecanoic acid

11M5/F-IV:

11-(3-Methyl-5-pentylfuran-2-yl)-undecanoic acid

a11:0:

8-Methyl-decanoic acid

a15:0:

12-Methyl-tetradecanoic acid

a17:0:

14-Methyl-hexadecanoic acid

CLA:

Conjugated linoleic acid

CTA:

Conjugated tetradecadienoic acid

FAME:

Fatty acid methyl ester(s)

GC:

Gas chromatography

GC/MS:

Gas chromatography with mass spectrometry

HSCCC:

High-speed counter-current chromatography

i15:0:

13-Methyl-tetradecanoic acid

i17:0:

15-Methyl-hexadecanoic acid

KU/L :

Partitioning coefficient (upper to lower phase)

MBFA:

Methyl branched fatty acid(s)

PUFA:

Polyunsaturated fatty acid(s)

SIM:

Selected ion monitoring mode

References

  1. Hu FB, Manson JE, Willett WC (2001) Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 20:5–19

    Google Scholar 

  2. Shorland FB, Weenink RO, Johns AT, McDonalds IRC (1957) The effect of sheep-rumen contents on unsaturated fatty acids. Biochem J 67:328–333

    CAS  Google Scholar 

  3. Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88:1056–1064

    CAS  Google Scholar 

  4. Chilliard Y, Ferlay A, Mansbridge RM, Doreau M (2000) Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann Zootech 49:181–205

    Article  CAS  Google Scholar 

  5. Lindmark Månsson H (2008) Fatty acids in bovine milk fat. Food Nutr Res 52. doi:10.3402/fnr.v52i0.1821

  6. Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350

    Article  CAS  Google Scholar 

  7. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585

    Article  CAS  Google Scholar 

  8. Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43:553–587

    Article  CAS  Google Scholar 

  9. Parodi PW (2009) Milk fat nutrition. In: Tamime AY (ed) Dairy fats and related products. Blackwell, Oxford (ISBN: 978-1-405-15090-3)

    Google Scholar 

  10. Spitteler G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:711–755

    Google Scholar 

  11. Bengen MF (1940) Deutsche Patentanmeldung O.Z. 12438

  12. Bengen F, Schlenk W (1949) Über neuartige Additionsverbindungen des Harnstoffs. Experientia 5:200

    Article  CAS  Google Scholar 

  13. Täufel K, Müller G, Franzke CL (1958) Über die Adduktbildung langkettiger Fettsäuren mit Harnstoff. Nahrung 2:255–267

    Article  Google Scholar 

  14. Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145–168

    Article  CAS  Google Scholar 

  15. Degenhardt A, Engelhardt UH, Lakenbrink C, Winterhalter P (2000) Preparative separation of polyphenols from tea by high-speed countercurrent chromatography. J Agric Food Chem 48:3425–3430

    Article  CAS  Google Scholar 

  16. Montilla EC, Hillebrand S, Butschbach D, Baldermann S, Watanabe N, Winterhalter P (2010) Preparative isolation of anthocyanins from Japanese purple sweet potato (Ipomoea batatas L.) varieties by high-speed countercurrent chromatography. J Agric Food Chem 58:9899–9904

    Article  CAS  Google Scholar 

  17. Koehler N, Wray V, Winterhalter P (2008) Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography. J Chromatogr A 1177:114–125

    Article  CAS  Google Scholar 

  18. Zhou Y, Chen F, Li Z (2002) Preparative separation of beta-sitosterol by high speed countercurrent chromatography. J Liq Chromatogr Relat Technol 25:1693–1701

    Article  CAS  Google Scholar 

  19. Schröder M, Vetter W (2011) High-speed counter-current chromatographic separation of phytosterols. Anal Bioanal Chem 400:3615–3623

    Article  Google Scholar 

  20. Schröder M, Vetter W (2012) Investigation of unsaponifiable matter of plant oils and isolation of eight phytosterols by means of high-speed counter-current chromatography. J Chromatogr A 1237:96–105

    Article  Google Scholar 

  21. Huang L, Cao X, Xu H, Chen G (2011) Separation and purification of ergosterol and stigmasterol in Anoectochilus roxburghii (wall) lindl by high-speed counter-current chromatography. J Sep Sci 34:385–392

    Article  CAS  Google Scholar 

  22. Cao X, Ito Y (2003) Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed countercurrent chromatography. J Chromatogr A 1021:117–124

    Article  CAS  Google Scholar 

  23. Bousquet O, Le Goffi F (1995) Counter-current chromatographic separation of polyunsaturated fatty acids. J Chromatogr A 704:211–216

    Article  CAS  Google Scholar 

  24. Kapp T, Vetter W (2009) Offline coupling of high-speed counter-current chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components. J Chromatogr A 1216:8391–9397

    Article  CAS  Google Scholar 

  25. Vetter W, Kirres J, Bendig P (2011) Bromination of 2-methoxydiphenyl ether to an average of tetrabrominated 2-methoxydiphenyl ethers. Chemosphere 84:1117–1124

    Article  CAS  Google Scholar 

  26. Du Q, Shu A, Ito Y (1996) Purification of fish oil ethyl esters by high-speed countercurrent chromatography using non-aqueous solvent systems. J Liq Chromatogr Relat Technol 19:1451–1457

    Article  CAS  Google Scholar 

  27. Murayama W, Kosuge Y, Nakaya N, Nunogaki Y, Nunogaki K, Cazes J, Nunogaki H (1988) Preparative separation of unsaturated fatty acid esters by centrifugal partition chromatography (CPC). J Liq Chromatogr 11:283–300

    Article  CAS  Google Scholar 

  28. Hauff S, Vetter W (2010) Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J Chromatogr A 1217:8270–8278

    Article  CAS  Google Scholar 

  29. Vetter W, Schröder M (2010) Concentrations of phytanic acid and pristanic acid are higher in organic than in conventional dairy products from the German market. Food Chem 119:746–752

    Article  CAS  Google Scholar 

  30. Thurnhofer S, Vetter W (2005) A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J Agric Food Chem 53:8896–8903

    Article  CAS  Google Scholar 

  31. Thurnhofer S, Vetter W (2006) Application of ethyl esters and d 3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. J Agric Food Chem 54:3209–3214

    Article  CAS  Google Scholar 

  32. Li D, Schröder M, Vetter W (2012) Isolation of 6,9,12,15-hexadecatetraenoic fatty acid (16:4n–1) methyl ester from transesterified fish oil by HSCCC. Chromatographia 75:1–6

    Article  Google Scholar 

  33. Crexi VT, Mote ML, Monte ML, Pinto LAA (2012) Polyunsaturated fatty acid concentrates of carp oil: chemical hydrolysis and urea complexation. J Am Oil Chem Soc 89:32–334

    Article  Google Scholar 

  34. Gámez-Meza N, Noriega-Rodríguez JA, Medina-Juárez LA, Ortega-García J, Monroy-Rivera J, Toro-Vázquez FJ, García HS, Angulo-Guerrero O (2003) Concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil by urea complexation. Food Res Int 36:721–727

    Article  Google Scholar 

  35. Liu S, Zhang C, Hong P, Ji H (2006) Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: optimization of progress parameters. J Food Eng 73:203–209

    Article  CAS  Google Scholar 

  36. Chakraborty K, Vijayagopal P, Chakraborty RD, Vijayan KK (2010) Preparation of eicosapentaenoic acid concentrates from sardine oil by Bacillus circulans lipase. Food Chem 120:433–442

    Article  CAS  Google Scholar 

  37. Ackman RG, Hooper SN (1968) Examination of isoprenoid fatty acids as distinguishing characteristics of specific marine oils with particular reference to whale oil. Comp Biochem Physiol 24:549–565

    Article  CAS  Google Scholar 

  38. Hayes DG, Bengtsson YC, van Alstine JM, Setterwall F (1998) Urea complexation for the rapid, ecologically responsible fractionation of fatty acids from seed oil. J Am Oil Chem Soc 75:1403–1409

    Article  CAS  Google Scholar 

  39. June Brown P, Mei G, Gibberd FB, Burston D, Mayne PD, McClinchy JE, Sidey M (1993) Diet and Refsum’s disease. The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum’s disease. J Human Nutr Diet 6:295–305

    Article  Google Scholar 

  40. Josten H, Fieg G, Gutsche B, Johannisbauer W (2004) Harnstoffällung als konkurrenzfähiges Trennverfahren für schwierige Stofftrennungen in der Oleochemie. Chem Ing Tech 76:1700–1703

    Article  CAS  Google Scholar 

  41. Schröder M, Vetter W (2011) GC/EI-MS determination of the diastereomer distribution of phytanic acid in food samples. J Am Oil Chem Soc 88:341–349

    Article  Google Scholar 

  42. Jensen RG (1973) Composition of bovine milk lipids. J Am Oil Chem Soc 50:186–192

    Article  CAS  Google Scholar 

  43. Thurnhofer S, Hottinger G, Vetter W (2007) Enantioselective determination of food-relevant anteiso fatty acids. Anal Chem 79:4696–4701

    Article  CAS  Google Scholar 

  44. Hauff S, Vetter W (2010) Creation and evaluation of a two-dimensional contour plot of fatty acid methyl esters after off-line coupling of reversed-phase HPLC and GC/EI-MS. Anal Bioanal Chem 396:2695–2707

    Article  CAS  Google Scholar 

  45. Haahti E, Nikkari T, Salmi A-M, Laaksonen A-L (1961) Fatty acids of vernix caseosa. Scand J Clin Lab Invest 13:70–73

    Article  CAS  Google Scholar 

  46. Schogt JCM, Haverkamp Begemann P (1965) Isolation of 11-cyclohexylundecanoic acid from butter. J Lipid Res 6:466–470

    CAS  Google Scholar 

  47. Ohya H, Komai Y, Yamaguchi M (1986) Zinc tolerance of an isolated bacterium containing ω-cyclohexyl fatty acid. FEMS Microbiol Lett 34:257–260

    CAS  Google Scholar 

  48. Schlosser S, Vetter W (2011) Fatty acids and polar lipid content of cheese and mould-contaminated cheese. Eur J Lipid Sci Technol 113:469–478

    Article  CAS  Google Scholar 

  49. Hauff S, Rilfors L, Hottinger G, Vetter W (2010) Structure and absolute configuration of an unsaturated anteiso fatty acid from Bacillus megaterium. J Chromatogr A 1217:1683–1687

    Article  CAS  Google Scholar 

  50. The Lipid Library. http://lipidlibrary.aocs.org/

  51. Chance DL, Gerhardt KO, Mawhinney TP (1998) Gas-liquid chromatography-mass spectrometry of hydroxyl fatty acids as their methyl esters tert-butyldimethylsilyl ethers. J Chromatogr A 793:91–98

    Article  CAS  Google Scholar 

  52. Jenske R, Vetter W (2008) Gas chromatography electron-capture negative-ion mass spectrometry for the quantitative determination of 2- and 3-hydroxy fatty acids in bovine milk fat. J Agric Food Chem 56:5500–5505

    Article  CAS  Google Scholar 

  53. Noble AC, Nawar WW (1971) Mass spectrometry of aldehyde esters. J Agric Food Chem 19:1039–1040

    Article  Google Scholar 

  54. Yayli N, Kiran Z, Seymen H, Genc H (2001) Characterization of lipids and fatty acid methyl ester contents in leaves and roots of Crocus vallicola. Turk J Chem 25:391–395

    CAS  Google Scholar 

  55. Brechany EY, Christie WW (1992) Identification of the saturated oxo fatty acids in cheese. J Dairy Res 59:57–64

    Article  CAS  Google Scholar 

  56. Brechany EY, Christie WW (1994) Identification of the unsaturated oxo fatty acids in cheese. J Dairy Res 62:111–115

    Article  Google Scholar 

  57. Márquez-Ruiz G, Rodríguez-Pino V, de la Fuente MA (2011) Determination of 10-hydroxystearic, 10-ketostearic, 8-hydroxypalmitic, and 8-ketopalmitic acids in milk fat by solid-phase extraction plus gas chromatography-mass spectrometry. J Dairy Sci 94:4810–4819

    Article  Google Scholar 

  58. Welke JE, Manfroi V, Zanus M, Lazarotto M, Alcaraz Zini C (2012) Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J Chromatogr A 1226:124–139

    Article  CAS  Google Scholar 

  59. Bourgeois G, vivas N, Glories Y, Vitry C (1995) Identification paer spectrométrie de masse couplée à la chromatographie en phase gazeuse des produits de dégradation des hydorperoxydes de lácide linoléique. Sci Aliments 15:625–630

    CAS  Google Scholar 

  60. Glass RL, Krick TP, Sand DM, Rahn CH, Schlenk H (1975) Furanoid Fatty acids from fish lipids. Lipids 10:695–702

    Article  CAS  Google Scholar 

  61. Guth H, Grosch W (1992) Furan fatty acids in butter and butter oil. Z Lebensm Unters Forsch 194:360–362

    Article  CAS  Google Scholar 

  62. Vetter W, Laure S, Wendlinger C, Mattes A, Smith AWT, Knight DW (2012) Determination of furan fatty acids in food samples. J Am Oil Chem Soc 89:1501–1508. doi:10.1007/s11746-012-2038-6

    Google Scholar 

  63. Iverson JL, Eisner J, Firestone D (1965) Detection of trace fatty acids in fats and oils by urea fractionation and gas-liquid chromatography. J Am Oil Chem Soc 42:1063–1068

    Article  CAS  Google Scholar 

  64. Precht D, Molkentin J (2003) Overestimation of linoleic acid and trans-C18:2 isomers in milk fats with emphasis on transΔ9, transΔ12-octadecadienoic acid. Milchwiss 58:30–34

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Vetter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1950 kb)

About this article

Cite this article

Schröder, M., Vetter, W. Detection of 430 Fatty Acid Methyl Esters from a Transesterified Butter Sample. J Am Oil Chem Soc 90, 771–790 (2013). https://doi.org/10.1007/s11746-013-2218-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-013-2218-z

Keywords

Navigation