Skip to main content
Log in

Altering Arabidopsis Oilseed Composition by a Combined Antisense-Hairpin RNAi Gene Suppression Approach

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Antisense (AS) and hairpin (HP) RNA interference (RNAi) targeted gene suppression technologies have been used to modify seed oil composition. Larger numbers of AS transgenics have to be screened to achieve a targeted level of suppression compared to RNAi. We hypothesized combining AS with RNAi might result in enhanced gene suppression compared to either method individually. AS and HP-RNAi were combined as hairpin antisense (HPAS) constructs containing ~125 bp sense and antisense portions of an untranslated region of the target gene separated by an intron containing an antisense copy of a portion of the target coding region. The Δ12-desaturase FAD2, the ω3-desaturase FAD3 and β-ketoacyl-ACP synthase (KAS) II were targeted in Arabidopsis to evaluate changes in oil composition with AS, HP and HPAS constructs driven by the phaseolin promoter. Modest but statistically significant enhancements in oilseed phenotypes were observed with HPAS relative to AS and HP-RNAi. Phenotypes for HPAS suppression of FAD2 and FAD3 were indistinguishable from their strongest mutant alleles. Our data suggest that HPAS may be useful for: (1) achieving levels of suppression comparable to those of gene knockouts in a tissue specific manner. (2) Maximizing suppression of suboptimal RNAi constructs and (3) minimizing the screening of transgenics to achieve desired oilseed composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FAD2:

Oleate desaturase

FAD3:

Linoleate desaturase

KASII:

β-Ketoacyl-ACP synthase

Oleic acid:

18:1

Stearic acid:

18:0

SCD:

Stearoyl-CoA-desaturase

References

  1. Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  CAS  Google Scholar 

  2. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624–2628

    Article  CAS  Google Scholar 

  3. Damude HG, Kinney AJ (2008) Engineering oilseeds to produce nutritional fatty acids. Physiol Plant 132:1–10

    CAS  Google Scholar 

  4. Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  CAS  Google Scholar 

  5. Somerville CR, Browse JA (1991) Plant lipids: metabolism, mutants, and membranes. Science 252:80–87

    Article  CAS  Google Scholar 

  6. Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA 104:4742–4747

    Article  CAS  Google Scholar 

  7. Sellwood C, Slabas AR, Rawsthorne S (2000) Effects of manipulating expression of acetyl-CoA carboxylase I in Brassica napus L. embryos. Biochem Soc Trans 28:598–600

    Article  CAS  Google Scholar 

  8. Jadhav A, Katavic V, Marillia EF, Michael Giblin E, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  CAS  Google Scholar 

  9. Singh S, Green A, Stoutjesdijk P, Liu Q (2000) Inverted-repeat DNA: a new gene-silencing tool for seed lipid modification. Biochem Soc Trans 28:925–927

    Article  CAS  Google Scholar 

  10. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  CAS  Google Scholar 

  11. Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22:567–600

    Article  CAS  Google Scholar 

  12. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  Google Scholar 

  13. Jorgensen RA (1995) Cosuppression flower color patterns, and metastable gene expression states. Science 268:686–691

    Article  CAS  Google Scholar 

  14. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  Google Scholar 

  15. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  Google Scholar 

  16. Mol JN, van der Krol AR, van Tunen AJ, van Blokland R, de Lange P, Stuitje AR (1990) Regulation of plant gene expression by antisense RNA. FEBS Lett 268:427–430

    Article  CAS  Google Scholar 

  17. Corey DR (2007) RNA learns from antisense. Nat Chem Biol 3:8–11

    Article  CAS  Google Scholar 

  18. Dean NM, Bennett CF (2003) Antisense oligonucleotide-based therapeutics for cancer. Oncogene 22:9087–9096

    Article  CAS  Google Scholar 

  19. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  20. Stuitje AR, Verbree EC, van der Linden KH, Mietkiewska EM, Nap JP, Kneppers TJ (2003) Seed-expressed fluorescent proteins as versatile tools for easy (co)transformation and high-throughput functional genomics in Arabidopsis. Plant Biotechnol J 1:301–309

    Article  CAS  Google Scholar 

  21. Slightom JL, Sun SM, Hall TC (1983) Complete nucleotide sequence of a French bean storage protein gene: Phaseolin. Proc Natl Acad Sci USA 80:1897–1901

    Article  CAS  Google Scholar 

  22. van der Geest AH, Hall TC (1997) The beta-phaseolin 5′ matrix attachment region acts as an enhancer facilitator. Plant Mol Biol 33:553–557

    Article  Google Scholar 

  23. Butte W, Eilers J, Hirsch K (1982) Trialkylsulfonium-hydroxides and trialkylselonium-hydroxides for the pyrolytic alkylation of acidic compounds. Anal Lett 15:841–850

    CAS  Google Scholar 

  24. Yamamoto K, Shibahara A, Nakayama T, Kajimoto G (1991) Determination of double-bond positions in methylene-interrupted dienoic fatty acids by GC-MS as their dimethyl disulfide adducts. Chem Phys Lipids 60:39–50

    Article  CAS  Google Scholar 

  25. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  CAS  Google Scholar 

  26. Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  CAS  Google Scholar 

  27. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    Article  CAS  Google Scholar 

  28. Shah S, Xin Z, Browse J (1997) Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis. Plant Physiol 114:1533–1539

    Article  CAS  Google Scholar 

  29. Miquel M, James D Jr, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212

    Article  CAS  Google Scholar 

  30. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development not photosynthesis in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  CAS  Google Scholar 

  31. Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  CAS  Google Scholar 

  32. James DW, Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245

    Article  CAS  Google Scholar 

  33. Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  CAS  Google Scholar 

  34. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  Google Scholar 

  35. Dormann P, Voelker TA, Ohlrogge JB (2000) Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol 123:637–644

    Article  CAS  Google Scholar 

  36. Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  CAS  Google Scholar 

  37. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Office of Basic Energy Sciences of the US Department of Energy and Dow Agrosciences for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Shanklin.

About this article

Cite this article

Nguyen, T., Shanklin, J. Altering Arabidopsis Oilseed Composition by a Combined Antisense-Hairpin RNAi Gene Suppression Approach. J Am Oil Chem Soc 86, 41–49 (2009). https://doi.org/10.1007/s11746-008-1322-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-008-1322-y

Keywords

Navigation