Skip to main content
Log in

Effects of a Diet Rich in n-3 Polyunsaturated Fatty Acids on Hepatic Lipogenesis and Beta-Oxidation in Mice

  • Original Article
  • Published:
Lipids

Abstract

Here, we investigate whether a diet rich in fish oil can lead to the development of hepatic alterations associated with non-alcoholic fatty liver disease (NAFLD). To achieve this goal, we provided, for 8 weeks, four different diets to 3-month-old C57BL/6 mice: (a) standard-chow diet (SC; 40 g soybean oil/kg diet, 10 % of the total energy content from lipids), (b) fish oil diet (FO; 4 g soybean oil and 36 g fish oil/kg diet, 10 % of the total energy content from lipids), (c) high-fat diet (HF; 40 g soybean oil and 238 g lard/kg diet, 50 % of the total energy content from lipids), and (d) high-fish oil diet (HFO; 40 g soybean oil and 238 g fish oil/kg diet, 50 % of the total energy content from lipids). Biochemical analyses, stereology, western-blotting and RT-qPCR were used. In the HF group, we found evidence of obesity, metabolic syndrome, and liver damage, along with hypertriglyceridemia, hepatic insulin resistance, and steatosis. On the other hand, the HFO group did not present these alterations and remained similar to the controls. The changes observed in the animals fed the HF diet were accompanied by an increase in hepatic lipogenesis and a decrease in beta-oxidation; meanwhile, in the HFO group, the opposite results were found, that is, reduced lipogenesis and elevated beta-oxidation, were most likely responsible for the prevention of deleterious hepatic alterations and liver damage. In conclusion, a diet rich in fish oil has beneficial effects on hepatic insulin resistance, lipogenesis and beta-oxidation and prevents hepatic tissue from liver damage and NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BM:

Body mass

CPT-1:

Carnitine palmitoyltransferase-1

EE:

Energy expenditure

FAS:

Fatty acid synthase

FE:

Feed efficiency

FO:

The fish oil group

GLUT-2:

Glucose transporter-2

HDL-c:

High-density lipoprotein-cholesterol

HF:

The high-fat group

HFO:

The high-fish oil group

HOMA-IR:

Homeostasis model assessment of insulin resistance index

IR:

Insulin resistance

LDL-c:

Low-density lipoprotein-cholesterol

NAFLD:

Non-alcoholic fatty liver disease

OGTT:

Oral glucose tolerance test

PEPCK:

Phosphoenolpyruvate carboxykinase

PPARalpha:

Peroxisome proliferator-activated receptor alpha

PUFA:

Polyunsaturated fatty acids

RQ:

Respiratory quotient

SC:

The standard-chow group

SREBP-1c:

Sterol regulatory element binding protein-1c

References

  1. Tanaka N, Zhang X, Sugiyama E, Kono H, Horiuchi A, Nakajima T, Kanbe H, Tanaka E, Gonzalez FJ, Aoyama T (2010) Eicosapentaenoic acid improves hepatic steatosis independent of PPARalpha activation through inhibition of SREBP-1 maturation in mice. Biochem Pharmacol 80:1601–1612

    Article  PubMed  CAS  Google Scholar 

  2. Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, Lichtenstein AH, Moustaid-Moussa N (2010) Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 140:1915–1922

    Article  PubMed  CAS  Google Scholar 

  3. Catta-Preta M, Martins MA, Cunha Brunini TM, Mendes-Ribeiro AC, Mandarim-de-Lacerda CA, Aguila MB (2012) Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition 28:212–219

    Article  PubMed  CAS  Google Scholar 

  4. Anderson N, Borlak J (2008) Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 60:311–357

    Article  PubMed  CAS  Google Scholar 

  5. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387–1395

    Article  PubMed  Google Scholar 

  6. Puglisi MJ, Hasty AH, Saraswathi V (2011) The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J Nutr Biochem 22:101–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Jump DB (2008) N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol 19:242–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Djousse L, Biggs ML, Lemaitre RN, King IB, Song X, Ix JH, Mukamal KJ, Siscovick DS, Mozaffarian D (2011) Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr 94:527–533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Dawczynski C, Hackermeier U, Viehweger M, Stange R, Springer M, Jahreis G (2011) Incorporation of n-3 PUFA and gamma-linolenic acid in blood lipids and red blood cell lipids together with their influence on disease activity in patients with chronic inflammatory arthritis—a randomized controlled human intervention trial. Lipids Health Dis 10:130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S–599S

    Article  PubMed  CAS  Google Scholar 

  11. Pachikian BD, Essaghir A, Demoulin JB, Neyrinck AM, Catry E, De Backer FC, Dejeans N, Dewulf EM, Sohet FM, Portois L, Deldicque L, Molendi-Coste O, Leclercq IA, Francaux M, Carpentier YA, Foufelle F, Muccioli GG, Cani PD, Delzenne NM (2011) Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets. PLoS One 6:e23365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Kim EH, Bae JS, Hahm KB, Cha JY (2012) Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Biochem Pharmacol 84:1359–1365

    Article  PubMed  CAS  Google Scholar 

  13. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  16. Barbosa-da-Silva S, Fraulob-Aquino JC, Lopes JR, Mandarim-de-Lacerda CA, Aguila MB (2012) Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One 7:e39837

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Tschanz SA, Burri PH, Weibel ER (2011) A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc 243:47–59

    Article  PubMed  CAS  Google Scholar 

  18. Aguila MB, Pinheiro AR, Parente LB, Mandarim-de-Lacerda CA (2003) Dietary effect of different high-fat diet on rat liver stereology. Liver Int 23:363–370

    Article  PubMed  CAS  Google Scholar 

  19. Catta-Preta M, Mendonca LS, Fraulob-Aquino J, Aguila MB, Mandarim-de-Lacerda CA (2011) A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Arch 459:477–485

    Article  PubMed  Google Scholar 

  20. Hashimoto Y, Yamada K, Tsushima H, Miyazawa D, Mori M, Nishio K, Ohkubo T, Hibino H, Ohara N, Okuyama H (2013) Three dissimilar high fat diets differentially regulate lipid and glucose metabolism in obesity-resistant Slc: Wistar/ST rats. Lipids 48:803–815

    Article  PubMed  CAS  Google Scholar 

  21. Pimentel GD, Lira FS, Rosa JC, Oller do Nascimento CM, Oyama LM, Harumi Watanabe RL, and Ribeiro EB (2013) High-fat fish oil diet prevents hypothalamic inflammatory profile in rats. ISRN Inflamm 419823

  22. Nakatani T, Kim HJ, Kaburagi Y, Yasuda K, Ezaki O (2003) A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity. J Lipid Res 44:369–379

    Article  PubMed  CAS  Google Scholar 

  23. Shimomura Y, Tamura T, Suzuki M (1990) Less body fat accumulation in rats fed a safflower oil diet than in rats fed a beef tallow diet. J Nutr 120:1291–1296

    PubMed  CAS  Google Scholar 

  24. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55:2688–2697

    Article  PubMed  CAS  Google Scholar 

  25. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  PubMed  CAS  Google Scholar 

  26. Shetty S, Ramos-Roman MA, Cho YR, Brown J, Plutzky J, Muise ES, Horton JD, Scherer PE, Parks EJ (2012) Enhanced fatty acid flux triggered by adiponectin overexpression. Endocrinology 153:113–122

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23:1946–1957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Oliver E, McGillicuddy FC, Harford KA, Reynolds CM, Phillips CM, Ferguson JF, Roche HM (2012) Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem 23:1192–1200

    Article  PubMed  CAS  Google Scholar 

  30. Kinote A, Faria JA, Roman EA, Solon C, Razolli DS, Ignacio-Souza LM, Sollon CS, Nascimento LF, de Araujo TM, Barbosa AP, Lellis-Santos C, Velloso LA, Bordin S, Anhe GF (2012) Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 153:3633–3645

    Article  PubMed  CAS  Google Scholar 

  31. Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA, Romanatto T, Pascoal LB, Caricilli AM, Torsoni MA, Prada PO, Saad MJ, Velloso LA (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61:1455–1462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Im SS, Kang SY, Kim SY, Kim HI, Kim JW, Kim KS, Ahn YH (2005) Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes 54:1684–1691

    Article  PubMed  CAS  Google Scholar 

  33. Lamping K, Nuno D, Coppey L, Holmes A, Hu S, Oltman C, Norris A, and Yorek M (2012) Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction. Diabetes Obes Metab

  34. Valenzuela R, Espinosa A, Gonzalez-Manan D, D’Espessailles A, Fernandez V, Videla LA, Tapia G (2012) N-3 long-chain polyunsaturated fatty acid supplementation significantly reduces liver oxidative stress in high fat induced steatosis. PLoS One 7:e46400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Hein GJ, Chicco A, Lombardo YB (2012) Fish oil normalizes plasma glucose levels and improves liver carbohydrate metabolism in rats fed a sucrose-rich diet. Lipids 47:141–150

    Article  PubMed  CAS  Google Scholar 

  36. Neschen S, Morino K, Dong J, Wang-Fischer Y, Cline GW, Romanelli AJ, Rossbacher JC, Moore IK, Regittnig W, Munoz DS, Kim JH, Shulman GI (2007) n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 56:1034–1041

    Article  PubMed  CAS  Google Scholar 

  37. Capanni M, Calella F, Biagini MR, Genise S, Raimondi L, Bedogni G, Svegliati-Baroni G, Sofi F, Milani S, Abbate R, Surrenti C, Casini A (2006) Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study. Aliment Pharmacol Ther 23:1143–1151

    Article  PubMed  CAS  Google Scholar 

  38. Spadaro L, Magliocco O, Spampinato D, Piro S, Oliveri C, Alagona C, Papa G, Rabuazzo AM, Purrello F (2008) Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis 40:194–199

    Article  PubMed  CAS  Google Scholar 

  39. Jafari T, Fallah AA, Azadbakht L (2013) Role of dietary n-3 polyunsaturated fatty acids in type 2 diabetes: a review of epidemiological and clinical studies. Maturitas 74:303–308

    Article  PubMed  CAS  Google Scholar 

  40. Valenzuela R, Videla LA (2011) The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food funct 2:644–648

    Article  PubMed  CAS  Google Scholar 

  41. Brunt EM (2007) Pathology of fatty liver disease. Mod Pathol 20(Suppl 1):S40–S48

    Article  PubMed  CAS  Google Scholar 

  42. Hayek T, Ito Y, Azrolan N, Verdery RB, Aalto-Setala K, Walsh A, Breslow JL (1993) Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest 91:1665–1671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Perfield JW 2nd, Ortinau LC, Pickering RT, Ruebel ML, Meers GM, Rector RS (2013) Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes 2013:296537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Zuniga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, Videla LA, Fernandez V (2011) N-3 PUFA supplementation triggers PPAR-alpha activation and PPAR-alpha/NF-kappaB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS One 6:e28502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Larter CZ, Yeh MM, Cheng J, Williams J, Brown S, dela Pena A, Bell-Anderson KS, Farrell GC (2008) Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation. J Gastroenterol Hepatol 23:267–275

    Article  PubMed  CAS  Google Scholar 

  46. Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM (2013) Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 62:2095–2105

    Article  PubMed  CAS  Google Scholar 

  47. Pettinelli P, Del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA (2009) Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta 1792:1080–1086

    Article  PubMed  CAS  Google Scholar 

  48. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J (2004) Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106:635–643

    Article  CAS  Google Scholar 

  49. Fenton JI, Hord NG, Ghosh S, Gurzell EA (2013) Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 89:379–390

    Article  PubMed  CAS  Google Scholar 

  50. Scorletti E, Byrne CD (2013) Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 33:231–248

    Article  PubMed  CAS  Google Scholar 

  51. Lamaziere A, Wolf C, Barbe U, Bausero P, Visioli F (2013) Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 88:149–154

    Article  PubMed  CAS  Google Scholar 

  52. Rossmeisl M, Medrikova D, van Schothorst EM, Pavlisova J, Kuda O, Hensler M, Bardova K, Flachs P, Stankova B, Vecka M, Tvrzicka E, Zak A, Keijer J, Kopecky J (2013) Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim Biophys Acta 1841:267–278

    Article  PubMed  CAS  Google Scholar 

  53. Kelton D, Lysecki C, Aukema H, Anderson B, Kang JX, Ma DW (2013) Endogenous synthesis of n-3 PUFA modifies fatty acid composition of kidney phospholipids and eicosanoid levels in the fat-1 mouse. Prostaglandins Leukot Essent Fatty Acids 89:169–177

    Article  PubMed  CAS  Google Scholar 

  54. Ottestad I, Hassani S, Borge GI, Kohler A, Vogt G, Hyotylainen T, Oresic M, Bronner KW, Holven KB, Ulven SM, Myhrstad MC (2012) Fish oil supplementation alters the plasma lipidomic profile and increases long-chain PUFAs of phospholipids and triglycerides in healthy subjects. PLoS One 7:e42550

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Brasky TM, Darke AK, Song X, Tangen CM, Goodman PJ, Thompson IM, Meyskens FL, Jr., Goodman GE, Minasian LM, Parnes HL, Klein EA, and Kristal AR (2013) Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst 105:1132–1141

    Google Scholar 

  56. McClaskey EM, Michalets EL (2007) Subdural hematoma after a fall in an elderly patient taking high-dose omega-3 fatty acids with warfarin and aspirin: case report and review of the literature. Pharmacotherapy 27:152–160

    Article  PubMed  CAS  Google Scholar 

  57. Tomita T, Hata T, Takeuchi T, Oguchi Y, Okada A, Aizawa K, Koshikawa M, Otagiri K, Motoki H, Kasai H, Izawa A, Koyama J, Hongo M, Ikeda U (2013) High concentrations of omega-3 fatty acids are associated with the development of atrial fibrillation in the Japanese population. Heart Vessels 28:497–504

    Article  PubMed  Google Scholar 

  58. Schwerbrock NM, Karlsson EA, Shi Q, Sheridan PA, Beck MA (2009) Fish oil-fed mice have impaired resistance to influenza infection. J Nutr 139:1588–1594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Villani AM, Crotty M, Cleland LG, James MJ, Fraser RJ, Cobiac L, Miller MD (2013) Fish oil administration in older adults: is there potential for adverse events? A systematic review of the literature. BMC Geriatr 13:41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Thatiany Marinho and Mrs. Aline Penna for their technical assistance. This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenacao de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Brazil.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Mandarim-de-Lacerda.

About this article

Cite this article

Bargut, T.C.L., Frantz, E.D.C., Mandarim-de-Lacerda, C.A. et al. Effects of a Diet Rich in n-3 Polyunsaturated Fatty Acids on Hepatic Lipogenesis and Beta-Oxidation in Mice. Lipids 49, 431–444 (2014). https://doi.org/10.1007/s11745-014-3892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3892-9

Keywords

Navigation