Skip to main content
Log in

Micellar Properties for Propoxylated Surfactants in Water/Alcohol Solvent Mixtures and Their Antibacterial and Polyester Fabric Antistatic Performances

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Two propoxylated quaternary amine surfactants characterized by two and six average PO adduct numbers (PO-2 and PO-6 QA surfactants) were synthesized to investigate the micellar properties of propoxylated cationic surfactants in water/alcohol mixtures. The effect of PPO groups on micelle formation was explored using conductivity, UV–vis spectroscopy, dynamic light scattering techniques. Regular or reverse micellization occur with water or alcohol rich solvent mixtures, respectively. For intermediate composition no micellization occurs. Also the performances in antibacterial and antistatic fabrics were studied. PO-2 QA surfactant has excellent antibacterial activities against both the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus while both surfactants have good antistatic activity over polyester fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244

    Article  Google Scholar 

  2. Castronuovo CC, Cuestas ML, Oubiña JR, Mathet VL (2015) Effect of several PEO–PPO amphiphiles on bax, bcl-2, and hTERT mRNAs: an insight into apoptosis and cell immortalization induced in hepatoma cells by these polymeric excipients. Biotechnol Appl Bioc 3:1–8

    Article  Google Scholar 

  3. Bromberg L, Temchenko M (1999) Self-assembly in aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(vinyl alcohol). Langmuir 15:8633–8639

    Article  CAS  Google Scholar 

  4. Du YZ, Weng Q, Yuan H, Hu FQ (2010) Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 4:6894–6902

    Article  CAS  Google Scholar 

  5. Orlich B, Schomäcker R (2002) Enzyme catalysis in reverse micelles. History and trends in bioprocessing and biotransformation. Springer, Berlin, Heidelberg, pp 185–208

    Chapter  Google Scholar 

  6. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959

    Article  CAS  Google Scholar 

  7. Leser ME, Luisi PL, Paimieri S (1989) The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. Biotechnol Bioeng 34:1140–1146

    Article  CAS  Google Scholar 

  8. Arscott PG, Ma C, Wenner JR, Bloomfield VA (1995) DNA condensation by cobalt hexaammine (III) in alcohol–water mixtures: dielectric constant and other solvent effects. Biopolymers 36:345–364

    Article  CAS  Google Scholar 

  9. Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J (2001) Conductivity, density, and adiabatic compressibility of dodecyldimethylbenzylammonium chloride in aqueous solutions. J Phys Chem B 105:1720–1724

    Article  CAS  Google Scholar 

  10. Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Problems associated with the treatment of conductivity-concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  11. Barth HG, Flippen RB (1995) Particle size analysis. Anal Chem 67:257R–272R

    Article  Google Scholar 

  12. Riter RE, Kimmel JR, Undiks EP (1997) Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. J Phys Chem B 101:8292–8297

    Article  CAS  Google Scholar 

  13. Shrestha LK, Shrestha RG, Aramaki K, Yoshikawa G, Ariga K (2013) Demonstration of solvent-induced one-dimensional nonionic reverse micelle growth. J Phys Chem Lett 4:2585–2590

    Article  CAS  Google Scholar 

  14. Zhu DM, Schelly ZA (1992) Investigation of the microenvironment in Triton X-100 reverse micelles in cyclohexane, using methyl orange as a probe. Langmuir 8:48–50

    Article  CAS  Google Scholar 

  15. Dizman B, Elasri MO, Mathias LJ (2006) Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds. J Polym Sci Pol Chem 44:5965–5973

    Article  CAS  Google Scholar 

  16. Dizman B, Elasri MO, Mathias LJ (2004) Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci 94:635–642

    Article  CAS  Google Scholar 

  17. Wilk KA, Poźniak R, Sokoŀowski A (2000) Antistatic and wetting properties of chemodegradable cationic surfactants containing 1,3-dioxolane moiety. J Surfactants Deterg 3:207–211

    Article  CAS  Google Scholar 

  18. Goncharenko AV, Lozovski VZ, Venger EF (2000) Lichtenecker’s equation: applicability and limitations. Opt Commun 174:19–32

    Article  CAS  Google Scholar 

  19. Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533

    Article  CAS  Google Scholar 

  20. Fidler J, Rodger PM (1999) Solvation structure around aqueous alcohols. J Phys Chem B 103:7695–7703

    Article  CAS  Google Scholar 

  21. Aramaki K, Olsson U, Yamaguchi Y (1999) Effect of water-soluble alcohols on surfactant aggregation in the C12EO8 system. Langmuir 15:6226–6232

    Article  CAS  Google Scholar 

  22. Michor EL, Berg JC (2014) Micellization behavior of aerosol OT in alcohol/water systems. Langmuir 30:12520–12524

    Article  CAS  Google Scholar 

  23. Hollamby MJ, Tabor R, Mutch KJ (2008) Effect of solvent quality on aggregate structures of common surfactants. Langmuir 24:12235–12240

    Article  CAS  Google Scholar 

  24. Zhang HL, Kong Z, Yan YM (2007) Microcalorimetric study of the influence of alcohols on the critical micelle concentration and thermodynamic functions of nonaqueous micelle solutions at 298.15 K. J Chem Eng Data 53:327–330

    Article  Google Scholar 

  25. Sarkar B, Alexandridis P (2010) Alkyl propoxy ethoxylate “Graded” surfactants: micelle formation and structure in aqueous solutions. J Phys Chem B 114:4485–4494

    Article  CAS  Google Scholar 

  26. Gradzielski M, Hoffmann H, Robisch P (1990) The aggregation behaviour of silicone surfactants in aqueous solutions. Tenside Surfact Det 27:366–379

    CAS  Google Scholar 

  27. Correa NM, Silber JJ, Riter RE (2012) Nonaqueous polar solvents in reverse micelle systems. Chem Rev 112:4569–4602

    Article  CAS  Google Scholar 

  28. Wçgrzyńska J, Chlebicki J (2006) Preparation, surface-active and antielectrostatic properties of multiple quaternary ammonium salts. J Surfact Deterg 9:221–226

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the International Science and Technology Cooperative Project of China (No. 2013DFA42120), National Science and Technology support projects (No. 2014BAE03B04 and 2014BAE03B03), International Science and Technology Cooperative Project of Shanxi province (No. 2015081046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Sun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, C., Wang, W. et al. Micellar Properties for Propoxylated Surfactants in Water/Alcohol Solvent Mixtures and Their Antibacterial and Polyester Fabric Antistatic Performances. J Surfact Deterg 19, 543–552 (2016). https://doi.org/10.1007/s11743-016-1801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1801-3

Keywords

Navigation