Skip to main content
Log in

Investigation of the physicochemical and biological properties of proline-based surfactants in single and mixed surfactant systems

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A series of surfactants derived from l-Proline, the free amine esters, the ester hydrochlorides and the quaternary ammonium compounds with varying chain lengths (C8–C14) were synthesised. The physicochemical and biological properties were determined in both single and sodium dodecyl sulphate (SDS) mixed systems with a view of enhancing the properties of the individual surfactants as potential ingredients in detergent formulations. The mode of action of the proline surfactants were investigated by their ability to form mixed micelles with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). The presence of a quaternary ammonium moiety and an increase in alkyl chain length were found to enhance the antibacterial activity of the proline QUAT derivatives. The SDS-C14 QUAT mixed system displayed good antibacterial activity with optimum activity at mole fractions αQUAT: 0.4 and 0.6. The antibacterial activity of the mixed system was found to be governed by the monomers rather than the micelles. The SDS-C14 QUAT mixed system also showed moderate irritancy which makes them potential candidates as detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Scheibel JJ. The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry. J Surfact Deterg. 2004;7:319–28.

    Article  CAS  Google Scholar 

  2. Yu Y, Zhao J, Andrew EB. Development of surfactants and builders in detergent formulations. Chin J Chem Eng. 2008;16:517–27.

    Article  CAS  Google Scholar 

  3. Rakutani K, Onda Y, Inaoka T. Surfactants derived from secondary alcohols. In: Karsa DR, editor. Industrial applications of surfactants IV. Cambridge: The Royal Society of Chemistry; 1999.

    Google Scholar 

  4. Johnson JR, Chirash W. Softener, bleach and anti-cling composition. US Pat 4203852 A. 1980.

  5. Tamura T, Iihara T, Nishida S, Ohta S. Cleaning performance and foaming properties of lauroylamidopropylbetaine/non-ionic mixed systems. J Surfact Deterg. 1999;2:207–11.

    Article  CAS  Google Scholar 

  6. Infante MR, Perez L, Pinazo A, Clapes P, Moran MC, Angelet M, Garcia MT, Vinardell MP. Amino acid-based surfactants. Comptes Rendues Chimi. 2004;250:583–92.

    Article  Google Scholar 

  7. Holmberg K. Preparation, application and biodegradability, 2nd edition, surfactant science series. New York: Marcel Dekker; 2004.

    Google Scholar 

  8. Pinazo A, Pons R, Perez L, Infante MR. Amino acids as raw material for biocompatible surfactants. Ind Eng Chem Res. 2011;50:4805–17.

    Article  CAS  Google Scholar 

  9. Chandra N, Tyagi VK. Synthesis, properties and applications of amino acid based surfactants: a review. J Dispers Sci Technol. 2013;34:800–8.

    Article  CAS  Google Scholar 

  10. Moran MC, Pinazo A, Perez L, Clapes P, Angelet M, Garcia MT, Vinardell MP, Infante MR. Green amino acid-based surfactants. Green Chem. 2004;6:233–40.

    Article  CAS  Google Scholar 

  11. Castillo JA, Pinazo A, Carilla J, Infante MR, Alsina MA, Haro I, Clapes. Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers. Langmuir. 2004;20:3379–87.

    Article  CAS  Google Scholar 

  12. Lukac M, Lacko I, Bukovsky M, Kyselova Z, Karlovsta J, Horvath B, Devinsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Cent Eur J Chem. 2010;8:194–201.

    CAS  Google Scholar 

  13. Perez L, Pinazo A, Garcia MT, Lozano M, Manresa A, Angelet M, Vinardell MP, Mitjans M, Pons R, Infante MR. Cationic surfactants from lysine: synthesis, micellization and biological evaluation. Eur J Med Chem. 2009;44:1884–92.

    Article  CAS  Google Scholar 

  14. Joondan N, Jhaumeer-Laulloo S, Caumul P. A study of the antibacterial activity of l-Phenylalanine and l-Tyrosine esters in relation to their CMCs and their interactions with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC as model membrane. Microbiol Res. 2014;169:675–85.

    Article  CAS  Google Scholar 

  15. Joondan N, Caumul P, Akerman M, Jhaumeer-Laulloo S. Synthesis, micellisation and interaction of novel quaternary ammonium compounds derived from l-Phenylalanine with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine as model membrane in relation to their antibacterial activity, and their selectivity over human red blood cells. Bioorg Chem. 2015;58:117–29.

    Article  CAS  Google Scholar 

  16. Faustino CMC, Calado ART, Garcia-Rio L. Mixed micelle formation between amino-acid based surfactants and phospholipids. J Colloid Interface Sci. 2011;329:493–8.

    Article  Google Scholar 

  17. Ohta A, Toda K, Morimoto Y, Asakawa T, Miyagishi S. Effect of the side chain of N-acyl amino acid surfactants on micelle formation: an isothermal titration calorimetry study. Colloid Surf A Physicochem Eng Asp. 2008;317:316–22.

    Article  CAS  Google Scholar 

  18. Jadhav V, Maiti S, Dasgupta A, Das PK, Dias RS, Miguel MG, Lindman B. Effect of head group geometry of amino acid based cationic surfactants on interaction with plasmid DNA. Biomacromolecules. 2008;9:1852–9.

    Article  CAS  Google Scholar 

  19. Dasgupta A, Das PK, Dias RS, Miguel MG, Lindman B, Jadhav VM, Gnanamani M, Maiti S. Effect of headgroup on DNA-cationic surfactant interactions. J Phys Chem B. 2007;111:8502–8.

    Article  CAS  Google Scholar 

  20. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–6.

    CAS  Google Scholar 

  21. Fait ME, Garrote GL, Clapes P, Tanco S, Lorenzo J, Morcelle SR. Biocatalytical synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids. 2015;47:1465–77.

    Article  CAS  Google Scholar 

  22. Li H, Yu C, Chen R, Li J, Li J. Novel inic liquid-type Gemini surfactants: synthesis, surface active property and antimicrobialo activity. Colloid Surf A Physicochem Eng Asp. 2012;395:116–24.

    Article  CAS  Google Scholar 

  23. Yang Y, Yang X, Xue J, Curren R, Huang J, Tan X, Xie X, Xiong X, et al. Altex Proceedings, 1/12, Proceedings of WC8, 139–143

  24. Holland PM, Rubingh DN. Mixed surfactant systems—an overview. ACS Symp Ser. 1992;501:2–30.

    Article  CAS  Google Scholar 

  25. Ong CP, Ng CL, Lee HK, Li SFY. The use of mixed surfactants in micellar electrokinetic chromatography. Electrophoresis. 1994;15:1273–5.

    Article  CAS  Google Scholar 

  26. Chen LG, Bermudez H. Charge screening between anionic and cationic surfactants in ionic liquids. Langmuir. 2013;29:2805–8.

    Article  CAS  Google Scholar 

  27. Clint JH. Surfactant aggregation. New York: Chapman and Hall; 1992.

    Book  Google Scholar 

  28. Bakshi MS, Sachar S, Mahajan N, Kaur I, Kaur G, Singh N, Sehgal P, Doe H. Mixed-micelle formation by strongly interacting surfactant binary mixtures: effect of head-group modification. Colloid Polym Sci. 2002;280:990–1000.

    Article  CAS  Google Scholar 

  29. Silva BFB, Marques EF. Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group. J Colloid Interface Sci. 2005;290:267–74.

    Article  CAS  Google Scholar 

  30. Ghosh S, Ghatak C, Banerjee C, Mandal S, Kuchlyan J, Sarkar N. Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactants and anionic surfactant-like ionic liquid: a pure nonlipid small unilamellar vesicular template used for solvent and rotational relaxation study. Langmuir. 2013;29:10066–76.

    Article  CAS  Google Scholar 

  31. Jing-Liang L, Bing-Hung C. Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials. 2009;2:76–94.

    Article  Google Scholar 

  32. Lozano N, Perez L, Pons R, Luque-Ortega JR, Fernandez-Reyes M, Rivas L, Pinazo A. Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloid Surf A Physicochem Eng Asp. 2008;319:196–203.

    Article  CAS  Google Scholar 

  33. Pape WJW, Hopper U. Standardization of an in vitro red blood cell test for evaluating the acute cytotoxic potential of tensides. Drug Res. 1990;4:498–502.

    Google Scholar 

Download references

Acknowledgements

One of the authors is thankful to Tertiary Education Commission (TEC) of Mauritius for the grant of a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Jhaumeer-Laulloo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joondan, N., Caumul, P. & Jhaumeer-Laulloo, S. Investigation of the physicochemical and biological properties of proline-based surfactants in single and mixed surfactant systems. J Surfact Deterg 20, 103–115 (2017). https://doi.org/10.1007/s11743-016-1895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1895-7

Keywords

Navigation