Skip to main content
Log in

Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4-Hydroxybutyric Acid and 6-Hydroxyhexanoic Acid

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Novel surface active maleate and methacrylate monomers based on derivatives of ω-hydroxy carboxylic acids have been synthesized. The monomers are comprised of hydrophobic alkyl chains and hydrophilic poly(ethylene glycol), quaternary ammonium, sulfonate and carboxylic fragments. Synthesized monomers sufficiently reduce surface tension at the aqueous solution-air interface. The copolymerization of synthesized monomers with 5-tert-butylperoxy-5-methyl-2-hexene-3-yne monomer and N-vinylpyrrolidone in solvent and emulsion copolymerization of synthesized peroxide containing surface active monomer with styrene have been carried out. The synthesized surface active monomers have been shown to be suitable emulsifiers for obtaining polystyrene colloid dispersions. It has been ascertained that the surface active copolymers obtained can form stable interpolyelectrolyte complexes with oppositely charged polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Scheme 5
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IPEC:

Interpolyelectrolyte complex

Surfmer:

Surface active monomer

VEP:

5-tert-Butylperoxy-5-methyl-2-hexene-3-yne

References

  1. Kulsherstha AS, Mahapatro A (2008) Polymers of biomedical application. ACS Symp Ser 977:1–7

    Article  Google Scholar 

  2. Vincenzini P, D’arrigo G (2008) Shape-memory polymers for biomedical application. Adv Sci Technol 54:96–102

    Article  Google Scholar 

  3. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864

    Article  CAS  Google Scholar 

  4. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  5. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921

    Article  CAS  Google Scholar 

  6. Zhang Y, Chu D, Zheng M, Kissel T (2012) Biocompatible and degradable poly(2-hydroxyethyl methacrylate) based polymers for biomedical applications. Polym Chem 3:2752–2759

    Article  CAS  Google Scholar 

  7. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  8. Puskas JE, Chen Y (2004) Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement. Biomacromolecules 4:1141–1154

    Article  Google Scholar 

  9. George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, Testa C, Alexander PM, Langer R, Sur M (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 17:3511–3519

    Article  Google Scholar 

  10. Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B Polym Phys 49:18–33

    Article  CAS  Google Scholar 

  11. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724

    Article  CAS  Google Scholar 

  12. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annual Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  13. Larson N, Ghandehari H (2012) Polymeric conjugates for drug delivery. Chem Mater 24:840–853

    Article  CAS  Google Scholar 

  14. Pan H, Kopecek J (2008) Multifunctional water-soluble polymers for drug delivery. Fundam Biomed Technol 4:81–142

    Article  Google Scholar 

  15. Abulateefeh SR, Spain GS, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 11:1722–1734

    Article  CAS  Google Scholar 

  16. Kim S, Kim JH, Jeon O, Kwon IC, Park K (2009) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71:420–430

    Article  CAS  Google Scholar 

  17. Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394

    Article  CAS  Google Scholar 

  18. Shaik RM, Korsapati M, Panati D (2012) Polymers in controlled drug delivery systems. Int J Pharma Sci 2:112–116

    Google Scholar 

  19. Hunter AC, Moghimi SM (2010) Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochimica Biophysica Acta 1797:1203–1209

    Article  CAS  Google Scholar 

  20. Srinivas R, Sanjoy S, Chaudhuri A (2009) Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem Soc Rev 38:3326–3338

    Article  CAS  Google Scholar 

  21. Zhu L, Mahato RI (2010) Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv 7:1209–1226

    Article  CAS  Google Scholar 

  22. Hajji P, David L, Gerard JF, Kaddami H, Pascault JP, Vigier G (1999) Synthesis-morphology-mechanical properties relationships of polymer-silica nanocomposite hybrid materials. MRS Proc 576:357

    Article  CAS  Google Scholar 

  23. Pyun J (2007) Nanocomposite materials from functional polymers and magnetic colloids. Polym Rev 47:231–263

    Article  CAS  Google Scholar 

  24. Sung D, Park S, Jon S (2012) Facile immobilization of biomolecules onto various surfaces using epoxide-containing antibiofouling polymers. Langmuir 28:4507–4514

    Article  CAS  Google Scholar 

  25. Ho K, Cole N, Chen R, Willcox MD, Rice SA, Kumar N (2012) Immobilization of antibacterial dihydropyrrol-2-ones on functional polymer supports to prevent bacterial infections in vivo. Antimicrob Agents Chemother 56:1138–1141

    Article  CAS  Google Scholar 

  26. Shen L (2011) Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater 2:355–372

  27. Nagai K (1994) Polymerization of surface active monomers and applications. Macromolecular Symposia 84:29–36

    Article  CAS  Google Scholar 

  28. Kohut AM, Hevus OI, Voronov SA (2004) Synthesis and properties of 4-(ω-methoxyoligodimethylsiloxanyl)butylmaleate; a new surfmer. J Appl Polymer Sci 93:310–313

    Article  CAS  Google Scholar 

  29. Ottewill RH, Satgurunathan R (1988) Non-ionic lattices in aqueous media. Part 2. Stability to add electrolytes. J Colloid Polym Sci 266:543–547

    Article  Google Scholar 

  30. Gramain P, Frere Y (1986) Preparation of monomethoxy-poly(ethylene oxide) acrylate and methacrylate and its polymerization: self-gelling polymers. Polym Commun 27:16–18

    CAS  Google Scholar 

  31. Tsaur SL, Fitch RM (1987) Preparation and properties of polystyrene model: i. Preparation of surface active monomers and model colloids derived therefrom. J Colloid Interface Sci 115:450–462

    Article  CAS  Google Scholar 

  32. Volkov V, Rodionova R (2006) Synthesis and properties of synthetic polymer latexes with copolymerized emulsifiers. Fibre Chem 38:359–364

    Article  CAS  Google Scholar 

  33. Hevus O, Kohut A, Fleychuk R, Zaichenko A, Pashinnik V, Shermolovich Y (2007) Novel surface active maleate monomers for obtaining non–emulsified latexes. React Eng 2:F5–F6

    Google Scholar 

  34. Yoshimura T, Koide Y, Shosenji H, Esumi K (2002) Preparation and surface active properties of telomere type anionic surfactant from maleic anhydride. J Surfact Deterg 5:257–262

    Article  CAS  Google Scholar 

  35. Nilson K, Mellin L, Nederberg F, Bowden T (2007) Addition of thiol-containing ligands to a surface-active Michael acceptor. Macromolecules 40:901–908

    Article  Google Scholar 

  36. Mekkil S, Saidi-Besbes S, Elaisarri A, Valour JP (2010) Synthesis of new anionic and cationic polymerizable surfactants for emulsion polymerization of styrene. Macromolecular Symposia 286:100–106

    Article  Google Scholar 

  37. Hevus O, Kohut A, Fleychuk R, Mitina N, Zaichenko O (2007) Colloid systems based on the basis of novel reactive surfmers. Macromolecular Symposia, Selected Contributions from the 3rd International Symposium on “React 2007” 254:117–121

  38. Jaeger W, Bohrisch J, Laschewsky A (2010) Synthetic polymers with quaternary nitrogen atoms—synthesis and structure of the most used type of cationic polyelectrolytes. Prog Polym Sci 35:511–577

    Article  CAS  Google Scholar 

  39. Narain R, Armes S (2003) Synthesis and aqueous solutions properties of novel sugar methacrylate based homopolymers and block copolymers. Biomacromolecules 4:1746–1758

    Article  CAS  Google Scholar 

  40. Klee EJ, Lehmann U (2010) Novel 2-(ω-phosphonooxy-2-oxaalkyl)acrylate monomers for self-etching self-priming one part adhesive. Beilstein J Org Chem 6:766–772

    Article  CAS  Google Scholar 

  41. Cho HG (2010) Preparation and characterization of novel acrylic monomers. J Applied Polym Sci 116:736–742

    Article  CAS  Google Scholar 

  42. Li W, Matjaszewski K (2011) Cationic surface-active monomers as reactive surfactants for AGET emulsion ATRP of n-butyl methacrylate. Macromolecules 44:5578–5585

    Article  CAS  Google Scholar 

  43. Senhaji O, Robin JJ, Achchoubi M, Boutevin B (2004) Synthesis and characterization of new methacrylic phosphonated monomer surface active monomer. Macromolecular Chem Phys 205:1039–1050

    Article  CAS  Google Scholar 

  44. Soula O, Gyout A, Williams N (1993) Styrenic surfmer in emulsion copolymerization of acrylic monomers. Copolymerization and film properties. J Polym Sci Part A: Polym Chem Ed 37:4202–4217

    Google Scholar 

  45. Narain R, Jhurry D, Wulf G (2002) Synthesis and characterization of polymers containing linear sugar moieties as side groups. Eur Polym J 38:273–280

    Article  CAS  Google Scholar 

  46. Ito K, Tanaka H, Tanaka K (1991) Poly(ethylene oxide) macromonomers. Micellar polymerization in water. Macromolecules 24:2348–2354

    Article  CAS  Google Scholar 

  47. Mishra MK (1994) Macromolecular design: concept and practice. Polymer Frontiers International Inc., New York, pp 161–227

    Google Scholar 

  48. Terao K, Nakamura Y, Norisuye T (1999) Solution properties of polymacromonomers consisting of polystyrene. 2. Chain dimensions and stiffness in cyclohexane and toluene. Macromolecules 32:711–716

    Article  CAS  Google Scholar 

  49. Furukashi H, Kawaguchi S, Itsuno S (1997) Synthesis, polymerization, and dispersion copolymerization of poly(ethylene oxide) macromonomers carrying methacryloyloxyalkyl end groups. Colloid Polym 275:227–233

    Article  Google Scholar 

  50. Maniruzzaman M, Kawaguchi S, Ito K (2000) Micellar copolymerization of styrene with poly(ethylene oxide) macromonomer in water: approach to unimolecular nanoparticles via pseudo-living radical polymerization. Macromolecules 33:1583–1592

    Article  CAS  Google Scholar 

  51. Ito K, Hashimura K, Itsuno S (1991) Poly(ethylene oxide) macromonomers. 8. Preparation and polymerization of hydroxypoly(ethylene oxide) macro-monomers. Macromolecules 24:3977–3981

    Article  CAS  Google Scholar 

  52. Busci A, Forkada J, Gibanel S (1998) Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules 31:581–620

    Google Scholar 

  53. Yoshinaga K, Nakashima F, Nishi T (1999) Polymer modification of colloidal particles by spontaneous polymerization of surface active monomers. Colloid Polym Sci 277:136–144

    Article  CAS  Google Scholar 

  54. Cheng CJ, Fu LQ, Bai XX, Liu SJ, Shen L, Fan WQ, Li HX (2013) Facile synthesis of gemini surface active ATRP initiator and its use in soap free AGET ATRP mini-emulsion polymerization. Chem Pap 67:336–341

    Article  CAS  Google Scholar 

  55. O’Donell J, Schumacher GE, Antonucci JM, Skrtic D (2009) Structure-composition-property relationships in polymeric amorphous calcium phosphate-based dental composites. Materials 2:1929–1954

    Article  Google Scholar 

  56. Dahlgren AG, Claesson PM, Audebert R (1994) Highly charged cationic polyelectrolytes on mica: influence of polyelectrolyte concentration on surface forces. J Colloid Interface Sci 166:343–349

    Article  CAS  Google Scholar 

  57. Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 8:823–832

    Article  Google Scholar 

  58. Kawadkar J, Chauhan MK (2010) The potential of thiolated polymers for peptide drug delivery. Int J Pharma Biol Arch 1:209–218

    Google Scholar 

  59. Zaichenko A, Mitina N, Shevchuk O, Rayevska K, Lobaz V, Skorohoda T, Stoika R (2008) Development of novel linear, block and branched oligoelectrolytes and functionally targeting nanoparticles. Pure Appl Chem 80:2309–2326

    Article  CAS  Google Scholar 

  60. Kohut A, Fleychuk R, Hevus O, Voronov S (2007) Macroinitiators on the basis of new peroxide surface active monomers. Chem Chem Technol 1:83–86

    Google Scholar 

  61. Hevus I, Pikh Z (2007) Novel surface active succinate monomers and initiators for obtaining reactive polymers. Macromolecular Symposia 254:103–108

    Article  CAS  Google Scholar 

  62. Buller K, Pearson D (1973) Organic synthesis [Russian translation], vol 2. Mir, Moscow

    Google Scholar 

  63. Kostruba A, Zaichenko A, Mitina N, Rayevska K, Hertsyk K (2008) Kinetics of the formation and structure of oligoperoxide nanolayers and grafted polymer brushes on glass plate surface. Central Eur J Phys 6:454–461

    Article  CAS  Google Scholar 

  64. Reichardt C, Welton T (2011) Solvents and solvents effects in organic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  65. Liu YL, Huang CT (2006) Investigation of oxidation of cyclic ketones and synthesis of ω-bromoalkanoic acids. Int J Appl Sci Eng 4:235–241

    Google Scholar 

  66. Abele S, Zicmanis A, Graillat C et al (1999) Cationic and zwitterionic polymerizable surfactants: quaternary ammonium dialkyl maleates. 1. Synthesis and characterization. Langmuir 15:1033–1044

    Article  CAS  Google Scholar 

  67. Organicum (1979) Practicum in organic chemistry [Russian translation], Vol. 2. Mir, Moscow

  68. Hubbart P, Brittain JW (1998) Mechanism of amine-catalyzed ester formation from an acid chloride and alcohol. J Org Chem 63:677–683

    Article  Google Scholar 

  69. Borzenkov M, Dolynska L, Kochubei V, Nadashkevic Z, Hevus O (2011) The obtaining of functional surface-active monomers based on tert-butylperoxy-6-hydroxyhexanoate. Chem Chem Technol 5:363–366

    Google Scholar 

  70. Herk A (2005) Chemistry and technology of emulsion polymerization. Blackwell Publishing Ltd, Chennai

    Book  Google Scholar 

  71. Dahneke BE (1983) Measurement of suspended particles by quasielastic light scattering. Wiley, New York

    Google Scholar 

  72. Oxley J, Smith J, Brady J, Dubnikova F, Kosloff R, Zeiri L, Zeiri Y (2008) Raman and infrared fingerprint spectroscopy of peroxide-based explosives. Appl Spectrosc 62:906–915

    Article  CAS  Google Scholar 

  73. Lin IJ, Moudgil BM, Somasundaran P (1973) Estimation of the effective number of -CH2- groups in long-chain surface active agents. Colloid Polym Sci 252:407–414

    Article  Google Scholar 

  74. Pompe T, Zschoche S, Herold N et al (2003) Maleic anhydride—a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079

    Article  CAS  Google Scholar 

  75. Cheng K, Ram IM (2013) Advanced delivery and therapeutic applications of RNAI. Wiley, New York

    Book  Google Scholar 

  76. Arshady R (1992) Suspension, emulsion and dispersion polymerization: a methodological survey. Colloid Polym Sci 270:717–732

    Article  CAS  Google Scholar 

  77. Cho I, Lee KW (1985) Morphology of latex particles formed by poly(methyl methacrylate)-seeded, emulsion polymerization of styrene. J Appl Polym Sci 30:1903–1926

    Article  CAS  Google Scholar 

  78. Monteiro JM, Barbeyrac J (2001) Free-radical polymerization of styrene in emulsion using a reversible addition-fragmentation chain transfer agent with a low transfer constant: effect on rate, particle size, and molecular weight. Macromolecules 34:4416–4423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Borzenkov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenkov, M., Mitina, N., Lobaz, V. et al. Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4-Hydroxybutyric Acid and 6-Hydroxyhexanoic Acid. J Surfact Deterg 18, 133–144 (2015). https://doi.org/10.1007/s11743-014-1640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1640-z

Keywords

Navigation