Skip to main content

Advertisement

Log in

Technology chain optimization: a systematic approach considering the manufacturing history

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The optimization of technology chains is usually conducted as a local problem of each individual process step. However, in order to optimize the technology chain in terms of product properties a local optimization is insufficient and a more holistic approach is indispensable. Existing methods, which consider the manufacturing history of a workpiece, are often accompanied by a high level of effort in research. This paper presents a systematic approach to integrate the manufacturing history into the technology chain optimization process going along with a significant reduction of effort compared to existing methods based on simulation and experiments. Resulting from previous methods and models a set of representative variables is identified to describe interactions and dependencies within technology chains. Furthermore, an approach consisting of three steps is developed which allows a visualization as well as an explanation of the cause-and-effect relationships within technology chains. This approach is used to deduce two different optimization strategies for technology chains. The first strategy allows a global optimization by adjusting specified parameters without changing the processes within the technology chain. Whereas the second strategy comprises a redesign of the whole chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schulz W, Bischof C, Bobzin K et al (2012) Virtual production systems. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 241–434

    Chapter  Google Scholar 

  2. Zaeh MF, Tekkaya AE, Biermann D et al (2009) Integrated simulation of the process chain composite extrusion–milling–welding for lightweight frame structures. Prod Eng Res Devel 3(4–5):441–451. doi:10.1007/s11740-009-0190-0

    Article  Google Scholar 

  3. Brandes A (2008) Positionierung technologischer Schnittstellen. Beitrag zur ganzheitlichen Auslegung fertigungstechnischer Prozessketten, 1st edn. Berichte aus dem IFW/Institut für Fertigungstechnik und Werkzeugmaschinen, vol 2008,06. PZH Produktionstechnisches Zentrum, Garbsen

  4. Zaeh MF, Papadakis L, Langhorst M (2008) Simulation of the manufacturing process chain of welded frame structures. Prod Eng Res Devel 2(4):385–393. doi:10.1007/s11740-008-0122-4

    Article  Google Scholar 

  5. Denkena B, Rudzio H, Brandes A (2006) Methodology for dimensioning technological interfaces of manufacturing process chains. CIRP Ann Manuf Technol 55(1):497–500. doi:10.1016/S0007-8506(07)60467-3

    Article  Google Scholar 

  6. Brinksmeier E, Gläbe R, Klocke F et al (2011) Process signatures—an alternative approach to predicting functional workpiece properties. Procedia Eng 19:44–52. doi:10.1016/j.proeng.2011.11.078

    Article  Google Scholar 

  7. Wuest T, Klein D, Seifert M et al (2012) Method to describe interdependencies of state characteristics related to distortion. Mat-wiss u Werkstofftech 43(1–2):186–191. doi:10.1002/mawe.201100908

    Article  Google Scholar 

  8. Straube A (2004)Modularer Ansatz zur Simulation verfahrensübergreifender fertigungstechnischer Prozessketten. Ph. D. Thesis, RWTH Aachen, Shaker Verlag, Aachen

  9. Straube A, Messner G, Schmitz R (2004) Berücksichtigung der Werkstoffhistorie in der simulierten Fertigungsprozesskette. In: Simulation in der Produkt- und Prozessentwicklung. Fraunhofer IRB Verlag, Stuttgart, pp 31–37

  10. Zaeh M, Kleiner M, Weiner K (2004) Simulation von Prozessketten zur flexiblen Fertigung leichter Tragwerksstrukturen. Zeitschrift für Wirtschaftlichen Fabrikbetrieb (ZWF) 99(5):248–252

    Google Scholar 

  11. Klocke F, Maier B, Tönissen S (2012) Methodik zur Identifizierung von funktionsrelevanten Oberflächen- und Randzoneneigenschaften in der Hartfeinbearbeitung. Ergebnisbericht des BMBF Verbundprojektes PlanPP. PLANPP. Apprimus Verlag, Aachen

    Google Scholar 

  12. Röttger K (2003) Walzen hartgedrehter Oberflächen. Dissertation, RWTH Aachen, Shaker Verlag, Aachen

  13. Denkena B, Henjes J, Henning H (2011) Simulation-based dimensioning of manufacturing process chains. CIRP J Manuf Sci Technol 4(1):9–14. doi:10.1016/j.cirpj.2011.06.015

    Article  Google Scholar 

  14. Schulze V, Osterried J, Strauß T et al (2012) Analysis of surface layer characteristics for sequential cutting operations. HTM J Heat Treatm Mat 67(6):347–356

    Article  Google Scholar 

  15. Hirsch J (2006) Through process modelling. MSF 519–521:15–24. doi:10.4028/www.scientific.net/MSF.519-521.15

    Article  Google Scholar 

  16. Klocke F, Pampus A, Zeppenfeld C (2007) Funktionale Oberflächen. wt Werkstatttechnik online 97(6):405–410

  17. Lübben T, Zoch H (2012) Einführung in die Grundlagen des Distortion Engineering. HTM J Heat Treatm Mat 67(6):275–290

    Article  Google Scholar 

  18. Nowag L, Sölter J, Brinksmeier E (2007) Influence of turning parameters on distortion of bearing rings. Prod Eng Res Devel 1(2):135–139. doi:10.1007/s11740-007-0009-9

    Article  Google Scholar 

  19. Klocke F (2009) Manufacturing processes 2. Grinding, honing, lapping. Springer, Berlin

  20. Surm H, Hoffmann F (2009) Influence of clamping conditions on distortion during heating of bearing rings. Mat-wiss u Werkstofftech 40(5–6):396–401. doi:10.1002/mawe.200900466

    Article  Google Scholar 

  21. Ropohl G (2009) Allgemeine technologie. Eine Systemtheorie der Technik. Univ.-Verl, Karlsruhe

    Google Scholar 

  22. Klocke F (2011) Manufacturing processes, RWTH edition. Springer, Berlin

  23. Suh N (1990) The principles of design. Oxford series on advanced manufacturing, vol 6. Oxford University Press, New York

  24. Suh N (1998) Axiomatic design theory for systems. Res Eng Des 10:189–209

  25. Suh N (2005) Complexity in engineering. CIRP Ann Manuf Technol 54(2):46–63

  26. Denkena B, Tönshoff HK (2011) Spanen. Grundlagen, 3rd ed. Springer, Heidelberg

  27. Eichgrün K Prozesssicherheit in fertigungstechnischen Prozessketten. Systemanalyse, ganzheitliche Gestaltung und Führung. Dissertation, Universität Kaiserslautern

  28. Königs H (2009) IT-risiko-management mit system. Von den Grundlagen bis zur Realisierung; ein praxisorientierter Leitfaden, 3rd edn. Vieweg Praxis. Vieweg + Teubner, Wiesbaden

  29. Pfeifer T (2001) Qualitätsmanagement. Strategien, Methoden, Techniken; mit 3 Tabellen, 3rd ed. Hanser, München, Wien

  30. Johlen G (2003) Prozessoptimierung für die Hartfeinbearbeitung durch Kombination von Hartdrehen und Schleifen. Dissertation, Universität Dortmund, Vulkan-Verlag, Essen

Download references

Acknowledgments

The authors would like to thank the German Research Foundation DFG for the support of the depicted research within the Project KL 500/109-1 “Statische und dynamische Bewertung soziotechnischer Fertigungssysteme” and the graduate program 1491 ‘‘Ramp-Up Management - Development of Decision Models for the Production Ramp-Up’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Buchholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocke, F., Buchholz, S. & Stauder, J. Technology chain optimization: a systematic approach considering the manufacturing history. Prod. Eng. Res. Devel. 8, 669–678 (2014). https://doi.org/10.1007/s11740-014-0572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0572-9

Keywords

Navigation