Skip to main content
Log in

Integrated simulation of the process chain composite extrusion–milling–welding for lightweight frame structures

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Generally, the manufacturing of lightweight frame structures involves various processes that yield the final product. Simulation methods can be used to optimise the different process steps. When chaining these process steps together in the simulation, software interfaces become necessary to realise an integrated virtual process chain. In this paper two approaches are presented that solve this issue and demonstrate it for an exemplary part. Different software tools with appropriate interfaces and the use of only one software tool for the simulation of the whole process chain are investigated respectively. The results of both approaches are analysed and relevant conclusions are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schomäcker M (2007) Verbundstrangpressen von Aluminiumprofilen mit endlosen metallischen Verstärkungselementen. Dissertation, Institute of Forming Technology and Lightweight Construction. Shaker, Dortmund, ISBN 978-3-8322-6039-2

  2. Schikorra M, Schomäcker M, Kloppenborg T, Tekkaya AE, Weidenmann K, Kerscher E, Löhe D (2007) Improved properties of aircraft stringer profiles by composite extrusion. In: Proceedings of the international conference on applied production technology (APT-07), Bremen (Germany), 17–19 September 2007, Conference Proceedings, pp 285–292, ISBN 978-3-933762-21-4

  3. Schikorra M (2006) Modellierung und simulationsgestützte Analyse des Verbundstrangpressens. Dissertation, Universität Dortmund. Shaker, Dortmund, ISBN 3-8322-5506-0

  4. Weinert K, Surmann T, Enk D, Webber O (2007) The effect of runout on the milling tool vibration and surface quality. In: Production engineering 1:3. Springer, Berlin/Heidelberg, ISSN 0944-6524 (Print) 1863–7353 (Online). doi:10.1007/s11740-007-0053-5, S. 265–270

  5. Weinert K, Surmann T (2006) Modeling of surface structures resulting from vibrating milling tools. Production engineering—research and development, Annals of the German Academic Society for Production Engineering, XIII, 2, pp 133–138

  6. Foley JD, Van Dam A, Feiner SK, Hughes JF (1995) Computer graphics: principles and practice in C, ISBN 0201848406

  7. Abramowski S, Müler H (1991) Geometrisches Modellieren, Bibliographisches Institut & F.A. Brockhaus AG, Mannheim, Germany, ISBN 3-411-14491-2

  8. Soehner J (2003) Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Elemente-Methode. Dissertation, Universität Karlsruhe (TH), Germany

  9. Oh J-D (2004) Modellierung und Simulation des mechanischen und thermischen Beanspruchungsverhaltens metallischer Werkstoffe bei der Spanbildung. Dissertation, Technische Universität Kaiserslautern, Germany

  10. Piendl S, Aurich JC, Steinicke M (2005) 3D finite-element simulation of chip formation in turning. Proceedings of the 8th CIRP international workshop on modelling of machining operations, Chemnitz, Germany, pp 225–234

  11. Weinert K, Biermann D, Kersting M, Grünert S (2008) Experimental and computational analysis of machining processes for light-weight aluminium structures. TTP Trans Tech Publications Ltd, Switzerland, Advanced Materials Research vol 43, pp 97–104

  12. Weinert K, Grünert S, Hammer N, Kersting M (2005) Analysis of circular milling processes for thin-walled space-frame-structures applying FEA-simulation. Production engineering-research and development, Annals of the German Academic Society for Production Engineering, XII, 1, pp 99–102, ISBN 3-9807670-6-x

  13. Weinert K, Grünert S, Kersting M (2006) Analysis of cutting technologies for lightweight frame components. In: Kleiner M et al (ed) Flexible manufacture of lightweight frame structures, TTP Trans Tech Publications Ltd., Switzerland, vol 10 of Advanced Materials Research, pp 121–136, ISBN 0-87849-403-0

  14. Radaj D (1992) Heat effects of welding—temperature field, residual stresses, distortion. Springer, Berlin

  15. Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer, New York

    Google Scholar 

  16. Jacobus K, Kapoor SG, DeVor RE (2001) Experimentation on the residual stresses generated by endmilling. J Manuf Sci Eng 123:748–753

    Article  Google Scholar 

  17. Jacobus K, DeVor RE, Kapoor SG (2000) Machining-induced residual stress: experimentation and modeling. J Manuf Sci Eng 122:20–31

    Article  Google Scholar 

  18. Dattoma V, De Giorgi M, Nobile R (2006) On the evolution of welding residual stress after milling and cutting machining. Comput Struct 84:1965–1976

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on investigations of the Transregional Collaborative Research Centre 10, which is kindly supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Langhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaeh, M.F., Tekkaya, A.E., Biermann, D. et al. Integrated simulation of the process chain composite extrusion–milling–welding for lightweight frame structures. Prod. Eng. Res. Devel. 3, 441 (2009). https://doi.org/10.1007/s11740-009-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11740-009-0190-0

Keywords

Navigation