Skip to main content
Log in

Isolation and characterization of a C-repeat binding factor (CBF)-like gene in cassava (Manihot esculenta Crantz)

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is a tropical and subtropical plant and susceptible to chilling injury. In this research, a C-repeat binding factor (CBF)-like gene (GenBank accession number JQ339740) has been isolated from cassava, and named as MeCBF1. The full-length DNA of MeCBF1 is 1,037 base pair (bp), without intron. The 5′ untranslated region is 102 bp, the 3′ untranslated region is 239 bp, and the open reading frame is 696 bp encoding 231 amino acids. The deduced amino acid sequence of MeCBF1 contains two CBF conserved motifs of PKK(P/R)AGRxKFxETRHP and DSxWR. The MeCBF1 shows 83 % homology to the CRT/DRE binding factor 1 from Hevea brasiliensis (Accession no. AAY43213.1). However, in cassava, the MeCBF1 target genes showed low similarity to the CBF/DREB regulated genes in Arabidopsis thaliana. Quantitative real-time PCR showed that the MeCBF1 was highly expressed in stems and leaves, and lowly expressed in roots. In addition, the expression of the MeCBF1 quickly responded to low temperature stress (4 °C). These results suggest that, the MeCBF1 is functional in cassava. Further studies on the MeCBF1 might be helpful to reveal molecular mechanism of cassava’s high sensitivity to low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomic 277:533–554

    Article  CAS  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon, and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A, Bucher P, Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Canella D, Gilmour SJ, Kuhn LA, Thomashow MF (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKF-xETRHP signature sequence. Biochim Biophys Acta 1799:454–462

    Article  PubMed  CAS  Google Scholar 

  • Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129:529–541

    Article  CAS  Google Scholar 

  • Cock JH (1982) Cassava: a basic energy-source in the tropics. Science 218:755–762

    Article  PubMed  CAS  Google Scholar 

  • Cock JH, Rosas S (1975) Ecophysiology of cassava. Symposium on ecophysiology of tropical crops. Communications Division of CEPLAC, Brazil, pp 1–14

    Google Scholar 

  • Dong C, Zhang Z, Qin Y, Ren J, Huang J, Wang B, Lu H, Cai B, Tao J (2013) VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance. Acta Physiologiae Plantarum 35(10):2975–2984

    Article  CAS  Google Scholar 

  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Thomashow MF, Fowler SG (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  PubMed  CAS  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    Article  PubMed  CAS  Google Scholar 

  • He LG, Wang HL, Liu DC, Zhao YJ, Xu M, Zhu M, Wei GQ, Sun ZH (2012) Isolation and expression of a cold-responsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters. Biol Plant 56(3):484–492

    Article  CAS  Google Scholar 

  • Li R, Hu X, Li K, Fu S, Guo J (2009) CaCl2 enhanced somatic embryogenesis in Manihot esculenta Ctantz. Biosci Biotechnol Biochem 73(11):2513–2515

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41:4135–4142

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc nat Acad Sci USA 104:21002–21007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oakenfull RJ, Baxter R, Knight MR (2013) A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS ONE 8(1):e54119. doi:10.1371/journal.pone.0054119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng YL, Wang YS, Cheng H, Sun CC, Wu P, Wang LY, Fei J (2013) Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140–141:68–76

    Article  PubMed  Google Scholar 

  • Polashock JJ, Arora R, Peng YH, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48

    Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  PubMed  CAS  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, Berlin

    Book  Google Scholar 

  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant 112:171–175

    Article  CAS  Google Scholar 

  • Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song GQ (2012) Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breed 30:1313–1323

    Article  CAS  Google Scholar 

  • Xiao HG, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Luo X (2011) Cloning and sequence analysis of actin gene fragment from cassava. Biotechnol bulletin 6:65–70 (in Chinese)

    Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233(2):219–229

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fowler SG, Cheng HM, Lou YG, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    Article  PubMed  CAS  Google Scholar 

  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA (2005) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23:764–769

    Article  PubMed  CAS  Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31:186–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No 2010CB126600), the National Natural Science Foundation of China (No 31170234; No 31160061; No 31371706), the Major Technology Project of Hainan (No ZDZX2013023-1); the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-12-hnwwq); the National Nonprofit Institute Research Grant of CATAS- ITBB130505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Guo.

Additional information

Communicated by M. Hajduch.

R. Li, Y. Ji and J. Fan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Ji, Y., Fan, J. et al. Isolation and characterization of a C-repeat binding factor (CBF)-like gene in cassava (Manihot esculenta Crantz). Acta Physiol Plant 36, 3089–3093 (2014). https://doi.org/10.1007/s11738-014-1664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1664-z

Keywords

Navigation