Skip to main content
Log in

Characteristics and genesis of the Feixianguan Formation oolitic shoal reservoir, Puguang gas field, Sichuan Basin, China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representative oolitic reservoir, which has been the biggest marine-sourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350×108 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. 87Sr/86Sr (0.707536–0.707934) and δ13CPDB (1.8‰–3.5‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas exploration activities in the Puguang area and in other areas with dolomitic reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson T F, Arthur MA (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems//Arthur M A. Stable Isotopes in Sedimentary Geology, Tulsa. SEPM Short Course, 10: 15–32

    Google Scholar 

  • Beach D K (1982). Depositional and Diagenetic History of Pliocene-Pleistocene Carbonates of Northwestern Great Bahama Bank: Evolution of A Carbonate Platform. Dissertation for Ph. D degree. Miami: University of Miami, 600

    Google Scholar 

  • Brasher J E, Vagle K R (1996). Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. AAPG Bull, 80(5): 746–769

    Google Scholar 

  • Budd D A (1988). Petrographic products of freshwater diagenesis in Holocene ooid sands, Schooner Cays, Bahamas. Carbonates and Evaporites, 3(2): 143–163

    Article  Google Scholar 

  • Duggan J P, Mountjoy E W, Stasiuk L D (2001). Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada. Sedimentology, 48(2): 301–323

    Article  Google Scholar 

  • Dunham R J (1962). Classification of carbonate rocks according to depositional texture. In: Han W E, ed. Classification of Carbonate Rocks. AAPG Mem, 1: 108–121

    Google Scholar 

  • Ehrenberg S N, Nadeau P H, Aqrawi A A M (2007). A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bull, 91(3): 275–286

    Article  Google Scholar 

  • Feng J L, Cao J, Hu K, Peng X Q, Chen Y, Wang Y F, Wang M (2013). Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China. Mar Pet Geol, 39(1): 124–137

    Article  Google Scholar 

  • Fu Q L, Qing H R, Bergman K M (2006). Early dolomitization and recrystallization of carbonate in an evaporite basin: the Middle Devonian Ratner laminite in southern Saskatchewan, Canada. J Geol Soc London, 163(6): 937–948

    Article  Google Scholar 

  • Gale J F W, Gomez L A (2007). Late opening-mode fractures in karstbrecciated dolostones of the Lower Ordovician Ellenburger Group, west Texas: recognition, characterization, and implications for fluid flow. AAPG Bull, 91(7): 1005–1023

    Article  Google Scholar 

  • Glumac B, Spivak-Birndorf M L (2002). Stable isotopes of carbon as an invaluable stratigraphic tool: an example from the Cambrian of the northern Appalachians, USA. Geology, 30(6): 563–566

    Article  Google Scholar 

  • Guo X S, Guo T L (2012). Exploration Theory and Practice of Large Scale Carbonate Platform Margin Gas Field of Puguang and Yuanba. Beijing: Science Press, 159–163 (in Chinese)

    Google Scholar 

  • Hao F, Guo T L, Du C G, Zou H Y, Cai X Y, Zhu Y M, Li P P, Wang C W, Zhang Y C (2009). Accumulation mechanisms and evolution history of the giant Puguang gas field, Sichuan Basin, China. Acta Geol Sin, 83(1): 136–145

    Article  Google Scholar 

  • Hao F, Guo T L, Zhu Y M, Cai X Y, Zou H Y, Li P P (2008). Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gasfield, Sichuan Basin, China. AAPG Bull, 92(5): 611–637

    Article  Google Scholar 

  • Hardie L A (1987). Dolomitization: a critical view of some current views. J Sediment Res, 57(1): 166–183

    Article  Google Scholar 

  • Harrison R S (1975). Porosity in Pleistocene Grainstones from Barbados: some preliminary observations. Bull Can Pet Geol, 23(2): 383–392

    Google Scholar 

  • Huang S J (1990). Cathodoluminescence and diagenetic alteration of marine carbonate minerals. Sedimentary Geol and Tethyan Geol, 4: 9–15

    Google Scholar 

  • Jiang L, Cai C F, Worden R H, Li K K, Xiang L (2013). Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China. Geofluids, 13(2): 232–245

    Article  Google Scholar 

  • Kaufman A J, Knoll A H (1995). Neoproterozoic variations in the Cisotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res, 73(1–4): 27–49

    Article  Google Scholar 

  • Korte C, Kozur H W, Bruckschen P, Veizer J (2003). Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta, 67(1): 47–62

    Article  Google Scholar 

  • Li K K, Cai C F, Jiang L, Cai L L, Jia L Q, Zhang B, Xiang L, Yuan Y Y (2012). Sr evolution in the Upper Permian and Lower Triassic carbonates, northeast Sichuan basin, China: constraints from chemistry, isotope and fluid inclusions. Appl Geochem, 27(12): 2409–2424

    Article  Google Scholar 

  • Ma Y S, Mou C L, Guo X S, Yu Q, Tan Q Y (2006a). Sedimentary facies and distribution of reservoir rocks from the Feixianguan Formation in the Daxian-Xuanhan region, NE Sichuan. Acta Geol Sin, 80(1): 137–151

    Article  Google Scholar 

  • Ma Y S, Guo T L, Cai X Y (2006b). Petroleum geology of the Northeastern Sichuan Basin and the characteristics of Puguang Gas Field, China. AAPG International Conference (Perth, Australia) Technical Program

    Google Scholar 

  • Ma Y S, Guo T L, Zhao X F, Cai X Y (2008). The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field. Sci China Ser D, 51(S1): 53–64

    Article  Google Scholar 

  • Ma Y S, Guo T L, Zhu G Y, Cai X Y, Xie Z Y (2007a). Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs: an example of Feixianguan Formation, east Sichuan. Chin Sci Bull, 52(S1): 178–183

    Article  Google Scholar 

  • Ma Y S, Guo X S, Guo T L, Huang R, Cai X Y, Li G X (2007b). The Puguang gas field: new giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull, 91(5): 627–643

    Article  Google Scholar 

  • Machel H G, Lonnee J (2002). Hydrothermal dolomite-a product of poor definition and imagination. Sediment Geol, 152(3–4): 163–171

    Article  Google Scholar 

  • Mazzullo S J, Harris P M (1992). Mesogenetic dissolution; its role in porosity development in carbonate reservoirs. AAPG Bull, 76(5): 607–620

    Google Scholar 

  • Meyers W J, Lu F H, Zachariah J K (1997). Dolomitization by mixed evaporative brines and freshwater, upper Miocene carbonates, Nijar, Spain. J Sediment Res, 67(5): 898–912

    Google Scholar 

  • Moore C H (1989). Carbonate Diagenesis and Porosity. New York: Elsevier, 338

    Google Scholar 

  • Moore C H, Druckman Y (1981). Burial diagenesis and porosity evolution, upper Jurassic Smackover, Arkansas and Louisiana. Am Assoc Pet Geol Bull, 65(4): 597–628

    Google Scholar 

  • Moradpour M, Zamani Z, Moallemi S A (2008). Controls in reservoir quality in the Lower Triassic Kangan Formation, Southern Persian Gulf. J Pet Geol, 31(4): 367–385

    Article  Google Scholar 

  • Scholle P A, Halley R B (1985). Burial diagenesis: out of sight, out of mind. In: Schneidermann N, Harris P M, eds. Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publication, 36: 309–334

    Google Scholar 

  • Steinen R P (1974). Phreatic and vadose diagenetic modification of Pleistocene limestone: petrographic observations from subsurface of Barbados, West Indies. AAPG Bull, 58(6): 1008–1024

    Google Scholar 

  • Swei G H, Tucker M E (2012). Impact of diagenesis on reservoir quality in ramp carbonates: Gialo Formation (Middle Eocene), Sirt Basin, Libya. J Pet Geol, 35(1): 25–47

    Article  Google Scholar 

  • Swirydczuk K (1988). Mineralogical control on porosity type in Upper Jurassic Smackover ooid grainstones, Southern Arkansas and Northern Louisiana. J Sediment Petrol, 58(2): 339–347

    Google Scholar 

  • Tan X C, Liu H, Li L, Luo B, Liu X G, Mou X H, Nie Y, Xi W Y (2011). Primary intergranular pores in Oolitic Shoal Reservoir of Lower Triassic Feixianguan Formation, Sichuan Basin, Southwest China: fundamental for reservoir formation and retention diagenesis. Journal of Earth Science, 22(1): 101–114

    Article  Google Scholar 

  • Tan X C, Zhao L Z, Luo B, Jiang X F, Cao J, Liu H, Li L, Wu X B, Nie Y (2012). Comparison of basic features and origins of oolitic shoal reservoirs between carbonate platform interior and platform margin locations in the Lower Triassic Feixianguan Formation of the Sichuan Basin, Southwest China. Petroleum Science, 9(4): 417–428

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976). The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta, 40(11): 1387–1395

    Article  Google Scholar 

  • Walkden G M, Williams O (1991). The diagenesis of the late Dinantian Derbyshire-East Midland carbonate shelf, central England. Sedimentology, 38(4): 643–670

    Article  Google Scholar 

  • Wang F, Lu X X, Lo C H, Wu F Y, He H Y, Yang L K, Zhu R X (2007a). Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China): 40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen. J Asian Earth Sci, 31(2): 153–166

    Article  Google Scholar 

  • Wang S Y, Jiang X Q, Guan H L, Bao Y J (2009). Pore evolution of reservoirs of Feixianguan Formation in Puguang gas field in Northeastern Sichuan. Petroleum Geology & Experiment, 31(1): 26–30 (in Chinese)

    Google Scholar 

  • Wang S Y, Jiang X Q, Guan H L, Bao Y J (2010). Diagenesis effects of Lower Triassic Feixianguan Formation reservoir in Puguang gas field, Northeast Sichuan. Petroleum Geology & Experiment, 32(4): 366–372 (in Chinese)

    Google Scholar 

  • Wang X Z, Zhang F, Ma Q, Yang M P, Wang Y G, Wen Y C, Yang Y, Zhang J (2002). The characteristics of reef and bank and the fluctuation of sea-level in Feixianguan Formation period of Late Permian-Early Triassic, East Sichuan basin. Acta Sedimentologica Sinica, 20(2): 249–254 (in Chinese)

    Google Scholar 

  • Wang Y G, Wen Y C, Hong H T, Xia M L, He T T, Song S J (2007b). Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southwest China. Acta Sedimentologica Sinica, 25(6): 831–839 (in Chinese)

    Google Scholar 

  • Warren J (2000). Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev, 52(1–3): 1–81

    Article  Google Scholar 

  • Zhao W Z, Xu C C, Wang T S, Wang H J, Wang Z C, Bian C S, Li X (2011). Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin. Chin Sci Bull, 56(31): 3310–3320

    Article  Google Scholar 

  • Zheng R C, Dang L R, Wen H G, Chen Z W, Chen F M, Zhang H J (2011). Diagenesis characteristics and system for dolostone in Feixianguan Formation of Northeast Sichuan. Earth Science-Journal of China University of Geoscience, 36(4): 659–669 (in Chinese)

    Google Scholar 

  • Zhu G Y, Zhang S C, Liang Y B, Dai J X, Li J (2005a). Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China. Sci China Ser D, 48(11): 1960–1971

    Article  Google Scholar 

  • Zhu G Y, Zhang S C, Liang Y B, Dai J X, Li J (2005b). Origins of high H2S-bearing natural gas in China. Acta Geol Sin, 79(5): 697–708

    Google Scholar 

  • Zou H Y, Hao F, Zhu Y M, Guo T L, Cai X Y, Li P P, Zhang X F (2008). Source rocks for the Giant Puguang Gas Field Sichuan Basin: implication for petroleum exploration in marine sequences in South China. Acta Geologica Sinica, 82(3): 477–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyuan Chen or Xiucheng Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Tan, X., Yang, H. et al. Characteristics and genesis of the Feixianguan Formation oolitic shoal reservoir, Puguang gas field, Sichuan Basin, China. Front. Earth Sci. 9, 26–39 (2015). https://doi.org/10.1007/s11707-014-0441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0441-z

Keywords

Navigation