Skip to main content
Log in

Effects of catalyst loading amount on the synthesis of poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagnesium thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight (M n), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The 1H NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, M n, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the M n and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheina E E, Liu J, Iovu M C, et al. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules, 2004, 37(10): 3526–3528

    Article  Google Scholar 

  2. Iovu M C, Sheina E E, Gil R R, et al. Experimental evidence for the quasi-“living” nature of the grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules, 2005, 38(21): 8649–8656

    Article  Google Scholar 

  3. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules, 2004, 37(4): 1169–1171

    Article  Google Scholar 

  4. Miyakoshi R, Yokoyama A, Yokozawa T. Catalyst-transfer polycondensation. mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). Journal of the American Chemical Society, 2005, 127(49): 17542–17547

    Article  Google Scholar 

  5. Osaka I, McCullough R D. Advances in molecular design and synthesis of regioregular polythiophenes. Accounts of Chemical Research, 2008, 41(9): 1202–1214

    Article  Google Scholar 

  6. Kiriy A, Senkovskyy V, Sommer M. Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromolecular Rapid Communications, 2011, 32(19): 1503–1517

    Article  Google Scholar 

  7. Liu J, Sheina E, Kowalewski T, et al. Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and triblock copolymers. Angewandte Chemie International Edition, 2002, 41(2): 329–332

    Article  Google Scholar 

  8. Miyakoshi R, Yokoyama A, Yokozawa T. Synthesis of poly(3-hexylthiophene) with a narrower polydispersity. Macromolecular Rapid Communications, 2004, 25(19): 1663–1666

    Article  Google Scholar 

  9. Liu J, McCullough R D. End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules, 2002, 35(27): 9882–9889

    Article  Google Scholar 

  10. Javier A E, Varshney S R, McCullough R D. Chain-growth synthesis of polyfluorenes with low polydispersities, block copolymers of fluorene, and end-capped polyfluorenes: toward new optoelectronic materials. Macromolecules, 2010, 43(7): 3233–3237

    Article  Google Scholar 

  11. Huang L, Wu S, Qu Y, et al. Grignard metathesis chain-growth polymerization for polyfluorenes. Macromolecules, 2008, 41(22): 8944–8947

    Article  Google Scholar 

  12. Miyakoshi R, Shimono K, Yokoyama A, et al. Catalyst-transfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity. Journal of the American Chemical Society, 2006, 128(50): 16012–16013

    Article  Google Scholar 

  13. Yokoyama A, Kato A, Miyakoshi R, et al. Precision synthesis of poly(N-hexylpyrrole) and its diblock copolymer with poly(p-phenylene) via catalyst-transfer polycondensation. Macromolecules, 2008, 41(20): 7271–7273

    Article  Google Scholar 

  14. Senkovskyy V, Tkachov R, Komber H, et al. Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: a new route to well-defined n-type conjugated copolymers. Journal of the American Chemical Society, 2011, 133(49): 19966–19970

    Article  Google Scholar 

  15. Sontag S K, Marshall N, Locklin J. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation. Chemical Communications, 2009, 45(23): 3354–3356

    Article  Google Scholar 

  16. Senkovskyy V, Khanduyeva N, Komber H, et al. Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation. Journal of the American Chemical Society, 2007, 129(20): 6626–6632

    Article  Google Scholar 

  17. Khanduyeva N, Senkovskyy V, Beryozkina T, et al. Grafting of poly(3-hexylthiophene) from poly(4-bromostyrene) films by Kumada catalyst-transfer polycondensation: revealing of the composite films structure. Macromolecules, 2008, 41(20): 7383–7389

    Article  Google Scholar 

  18. Khanduyeva N, Senkovskyy V, Beryozkina T, et al. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. Journal of the American Chemical Society, 2009, 131(1): 153–161

    Article  Google Scholar 

  19. Doubina N, Jenkins J L, Paniagua S A, et al. Surface-initiated synthesis of poly(3-methylthiophene) from indium tin oxide and its electrochemical properties. Langmuir, 2012, 28(3): 1900–1908

    Article  Google Scholar 

  20. Senkovskyy V, Beryozkina T, Bocharova V, et al. A core-first preparation of poly(3-alkylthiophene) stars. Macromolecular Symposia, 2010, 291-292(1): 17–25

    Article  Google Scholar 

  21. Bronstein H A, Luscombe C K. Externally initiated regioregular P3HT with controlled molecular weight and narrow polydispersity. Journal of the American Chemical Society, 2009, 131(36): 12894–12895

    Article  Google Scholar 

  22. Smeets A, Van den Bergh K, De Winter J, et al. Incorporation of different end groups in conjugated polymers using functional nickel initiators. Macromolecules, 2009, 42(20): 7638–7641

    Article  Google Scholar 

  23. Okamoto K, Luscombe C K. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polymer Chemistry, 2011, 2(11): 2424–2434

    Article  Google Scholar 

  24. Yuan M, Okamoto K, Bronstein H A, et al. Constructing regioregular star poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation. ACS Macro Letters, 2012, 1(3): 392–395

    Article  Google Scholar 

  25. Wang J, Lu C, Mizobe T, et al. Synthesis and characterization of all-conjugated graft copolymers comprised of n-type or p-type backbones and poly(3-hexylthiophene) side chains. Macromolecules, 2013, 46(5): 1783–1793

    Article  Google Scholar 

  26. Wang J, Ueda M, Higashihara T. Synthesis of all-conjugated donor-acceptor-donor ABA-type triblock copolymers via Kumada catalyst-transfer polycondensation. ACS Macro Letters, 2013, 2(6): 506–510

    Article  Google Scholar 

  27. Wang J, Higashihara T. Synthesis of all-conjugated donor-acceptor block copolymers and their application in all-polymer solar cells. Polymer Chemistry, 2013, 4(22): 5518–5526

    Article  Google Scholar 

  28. Doubina N, Ho A, Jen A K, et al. Effect of initiators on the Kumada catalyst-transfer polycondensation reaction. Macromolecules, 2009, 42(20): 7670–7677

    Article  Google Scholar 

  29. Senkovskyy V, Sommer M, Tkachov R, et al. Convenient route to initiate Kumada catalyst-transfer polycondensation using Ni (dppe)Cl2 or Ni(dppp)Cl2 and sterically hindered grignard compounds. Macromolecules, 2010, 43(23): 10157–10161

    Article  Google Scholar 

  30. Doubina N, Stoddard M, Bronstein H A, et al. The effects of binding ligand variation on the nickel catalyzed externally initiated polymerization of 2-bromo-3-hexyl-5-iodothiophene. Macromolecular Chemistry and Physics, 2009, 210(22): 1966–1972

    Article  Google Scholar 

  31. Bilbrey J A, Sontag S K, Huddleston N E, et al. On the role of disproportionation energy in Kumada catalyst-transfer polycondensation. ACS Macro Letters, 2012, 1(8): 995–1000

    Article  Google Scholar 

  32. Wong M, Hollinger J, Kozycz L M, et al. An apparent sizeexclusion quantification limit reveals a molecular weight limit in the synthesis of externally initiated polythiophenes. ACS Macro Letters, 2012, 1(11): 1266–1269

    Article  Google Scholar 

  33. Koch F P V, Smith P, Heeney M. “Fibonacci’s route” to regioregular oligo(3-hexylthiophene)s. Journal of the American Chemical Society, 2013, 135(37): 13695–13698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Higashihara, T. Effects of catalyst loading amount on the synthesis of poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation. Front. Mater. Sci. 8, 383–390 (2014). https://doi.org/10.1007/s11706-014-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0261-9

Keywords

Navigation