Skip to main content
Log in

Metal-free, carbon-based catalysts for oxygen reduction reactions

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C–M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N–N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorporation of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J P, Wu G, Chung H T, Johnston C M, Zelenay P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science. 2011, 4(1): 114–130

    Article  CAS  Google Scholar 

  2. Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental. 2005, 56(1–2): 9–35

    Article  CAS  Google Scholar 

  3. Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources. 2007, 172(1): 145–154

    Article  CAS  Google Scholar 

  4. Videla A H A M, Zhang L, Kim J, Zeng J, Francia C, Zhang J, Specchia S. Mesoporous carbons supported non-noble metal Fe–N X electrocatalysts for PEM fuel cell oxygen reduction reaction. Journal of Applied Electrochemistry. 2013, 43(2): 159–169

    Article  CAS  Google Scholar 

  5. Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science. 2009, 324(5923): 71–74

    Article  CAS  Google Scholar 

  6. Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science. 2011, 332(6028): 443–447

    Article  CAS  Google Scholar 

  7. Matter P H, Wang E, Arias M, Biddinger E J, Ozkan U S. Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. Journal of Molecular Catalysis A Chemical. 2007, 264(1–2): 73–81

    Article  CAS  Google Scholar 

  8. Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Advanced Functional Materials. 2012, 22(21): 4584–4591

    Article  CAS  Google Scholar 

  9. Vante N A, Jaegermann W, Tributsch H, Hoenle W, Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. Journal of the American Chemical Society. 1987, 109(11): 3251–3257

    Article  CAS  Google Scholar 

  10. Vante N A, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature. 1986, 323(6087): 431–432

    Article  CAS  Google Scholar 

  11. Lewera A, Inukai J, Zhou W P, Cao D, Duong H T, Alonso-Vante N, Wieckowski A A, Lewera J I. Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochimica Acta. 2007, 52(18): 5759–5765

    Article  CAS  Google Scholar 

  12. Jasinski R. A new fuel cell cathode catalyst. Nature. 1964, 201(4925): 1212–1213

    Article  CAS  Google Scholar 

  13. Kadish K M, Frémond L, Ou Z, Shao J, Shi C, Anson F C, Burdet F, Gros C P, Barbe J M, Guilard R. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: Reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads. Journal of the American Chemical Society. 2005, 127(15): 5625–5631

    Article  CAS  Google Scholar 

  14. Baranton S, Coutanceau C, Garnier E, Léger J M. How does a- FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? Journal of Electroanalytical Chemistry, 2006, 590(1): 100–110

    Article  CAS  Google Scholar 

  15. Rita Sulub W M M. Study of the catalytic activity for oxygen reduction of polythiophene modified with cobalt or nickel. International Journal of Electrochemical Science. 2009, 4: 1015–1027

    Google Scholar 

  16. Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature. 2006, 443(7107): 63–66

    Article  CAS  Google Scholar 

  17. Millán W M, Smit M A. Study of electrocatalysts for oxygen reduction based on electroconducting polymer and nickel. Journal of Applied Polymer Science. 2009, 112(5): 2959–2967

    Article  CAS  Google Scholar 

  18. Deng C Z, Dignam M J. Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts I. Physical and electrochemical characterization. Journal of the Electrochemical Society. 1998, 145(10): 3507–3512

    Article  CAS  Google Scholar 

  19. Yang R, Stevens K, Dahn J R. Investigation of activity of sputtered transition-metal (TM)–C–N (TM = V, Cr, Mn, Co, Ni) catalysts for oxygen reduction reaction. Journal of the Electrochemical Society. 2008, 155(1): B79–B91

    Article  CAS  Google Scholar 

  20. Ishihara A, Shibata Y, Mitsushima S, Ota K. Partially oxidized tantalum carbonitrides as a new nonplatinum cathode for PEFC-1. Journal of the Electrochemical Society. 2008, 155(4): B400–B406

    Article  CAS  Google Scholar 

  21. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009, 323(5915): 760–764

    Article  CAS  Google Scholar 

  22. Wang S, Yu D, Dai L. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. Journal of the American Chemical Society. 2011, 133(14): 5182–5185

    Article  CAS  Google Scholar 

  23. Wang S, Yu D, Dai L, Chang D W, Baek J B. Polyelectrolytefunctionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano. 2011, 5(8): 6202–6209

    Article  CAS  Google Scholar 

  24. Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society. 2010, 132(43): 15127–15129

    Article  CAS  Google Scholar 

  25. Qu L, Liu Y, Baek J B, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010, 4(3): 1321–1326

    Article  CAS  Google Scholar 

  26. Jeon I Y, Yu D, Bae S Y, Choi H J, Chang D W, Dai L, Baek J B. Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity. Chemistry of Materials. 2011, 23(17): 3987–3992

    Article  CAS  Google Scholar 

  27. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Advanced Materials. 2012, 24(41): 5593–5597

    Article  CAS  Google Scholar 

  28. Tang Y, Allen B L, Kauffman D R, Star A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. Journal of the American Chemical Society. 2009, 131(37): 13200–13201

    Article  CAS  Google Scholar 

  29. Chen T, Cai Z, Yang Z, Li L, Sun X, Huang T, Yu A, Kia H G, Peng H. Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes. Advanced Materials. 2011, 23(40): 4620–4625

    Article  CAS  Google Scholar 

  30. Yang W, Fellinger T P, Antonietti M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. Journal of the American Chemical Society. 2011, 133(2): 206–209

    Article  CAS  Google Scholar 

  31. Wang X, Lee J S, Zhu Q, Liu J, Wang Y, Dai S. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chemistry of Materials. 2010, 22(7): 2178–2180

    Article  CAS  Google Scholar 

  32. Liu R, Wu D, Feng X, Müllen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie International Edition. 2010, 49(14): 2565–2569

    Article  CAS  Google Scholar 

  33. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W X, Fu Q, Ma X, Xue Q, Sun G, Bao X. Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials. 2011, 23(5): 1188–1193

    Article  CAS  Google Scholar 

  34. Shanmugam S, Osaka T. Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chemical Communications. 2011, 47(15): 4463–4465

    Article  CAS  Google Scholar 

  35. Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W. Manageable N-doped graphene for high performance oxygen reduction reaction. Scientific Reports. 2013, 3: 2771

    Google Scholar 

  36. Jeon I Y, Choi H J, Ju M J, Choi I T, Lim K, Ko J, Kim H K, Kim J C, Lee J J, Shin D, Jung S M, Seo J M, Kim M J, Park N, Dai L, Baek J B. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports. 2013, 3: 2260

  37. Vikkisk M, Kruusenberg I, Joost U, Shulga E, Kink I, Tammeveski K. Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Applied Catalysis B: Environmental. 2014, 147: 369–376

    Article  CAS  Google Scholar 

  38. Cong H P, Wang P, Gong M, Yu S H. Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol—tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy. 2014, 3: 55–63

    Article  CAS  Google Scholar 

  39. Yan J, Meng H, Xie F, Yuan X, Yu W, Lin W, Ouyang W, Yuan D. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources. 2014, 245: 772–778

    Article  CAS  Google Scholar 

  40. Lu J, Bo X, Wang H, Guo L. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochimica Acta. 2013, 108: 10–16

    Article  CAS  Google Scholar 

  41. Wen Q, Wang S, Yan J, Cong L, Chen Y, Xi H. Porous nitrogendoped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry. 2014, 95: 23–28

    Article  CAS  Google Scholar 

  42. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry. 2011, 21(22): 8038–8044

    Article  CAS  Google Scholar 

  43. Nagaiah T C, Kundu S, Bron M, Muhler M, Schuhmann W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications. 2010, 12(3): 338–341

    Article  CAS  Google Scholar 

  44. Zhou X, Yang Z, Nie H, Yao Z, Zhang L, Huang S. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium. Journal of Power Sources. 2011, 196(23): 9970–9974

    Article  CAS  Google Scholar 

  45. Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano. 2011, 5(6): 4350–4358

    Article  CAS  Google Scholar 

  46. Bo X, Han C, Zhang Y, Guo L. Confined nanospace synthesis of less aggregated and porous nitrogen-doped graphene as metal-free electrocatalysts for oxygen reduction reaction in alkaline solution. ACS Applied Materials & Interfaces. 2014, 6(4): 3023–3030

    Article  CAS  Google Scholar 

  47. Zhang Y, Jiang W J, Zhang X, Guo L, Hu J S, Wei Z, Wan L J. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics. 2014, 16(27): 13605–13609

    Article  CAS  Google Scholar 

  48. Liu X, Zhu H, Yang X. One-step synthesis of dopamine-derived micro/mesoporous nitrogen-doped carbon materials for highly efficient oxygen-reduction catalysts. Journal of Power Sources. 2014, 262: 414–420

    Article  CAS  Google Scholar 

  49. Zhang B, Wen Z, Ci S, Mao S, Chen J, He Z. Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Applied Materials & Interfaces. 2014, 6(10): 7464–7470

    Article  CAS  Google Scholar 

  50. Nam G, Park J, Kim S T, Shin D, Park N, Kim Y, Lee J S, Cho J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters. 2014, 14(4): 1870–1876

    Article  CAS  Google Scholar 

  51. Yan J, Meng H, Xie F, Yuan X, Yu W, Lin W, Ouyang W, Yuan D. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources. 2014, 245: 772–778

    Article  CAS  Google Scholar 

  52. Ratso S, Kruusenberg I, Vikkisk M, Joost U, Shulga E, Kink I, Kallio T, Tammeveski K. Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon. 2014, 73: 361–370

    Article  CAS  Google Scholar 

  53. Chen J, Wang X, Cui X, Yang G, Zheng W. One-step synthesis of N-doped amorphous carbon at relatively low temperature as excellent metal-free electrocatalyst for oxygen reduction. Catalysis Communications. 2014, 46: 161–164

    Article  CAS  Google Scholar 

  54. Ouyang W, Zeng D, Yu X, Xie F, Zhang W, Chen J, Yan J, Xie F, Wang L, Meng H, Yuan D. Exploring the active sites of nitrogendoped graphene as catalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy. 2014, 39(28): 15996–16005

    Article  CAS  Google Scholar 

  55. Lyth S M, Nabae Y, Moriya S, Kuroki S, Kakimoto M, Ozaki J, Miyata S. Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. Journal of Physical Chemistry C. 2009, 113(47): 20148–20151

    Article  CAS  Google Scholar 

  56. Kwon K, Sa Y J, Cheon J Y, Joo S H. Ordered mesoporous carbon nitrides with graphitic frameworks as metal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium. Langmuir. 2012, 28(1): 991–996

    Article  CAS  Google Scholar 

  57. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith S C, Jaroniec M, Lu G Q, Qiao S Z. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. Journal of the American Chemical Society. 2011, 133(50): 20116–20119

    Article  CAS  Google Scholar 

  58. Liang J, Zheng Y, Chen J, Liu J, Hulicova-Jurcakova D, Jaroniec M, Qiao S Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angewandte Chemie International Edition. 2012, 51(16): 3892–3896

    Article  CAS  Google Scholar 

  59. Yang S, Feng X, Wang X, Müllen K. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angewandte Chemie International Edition. 2011, 50(23): 5339–5343

    Article  CAS  Google Scholar 

  60. Sun Y, Li C, Xu Y, Bai H, Yao Z, Shi G. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications. 2010, 46(26): 4740–4742

    Article  CAS  Google Scholar 

  61. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis. 2012, 2(5): 781–794

    Article  CAS  Google Scholar 

  62. Liu R, Wu D, Feng X, Müllen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie International Edition. 2010, 49(14): 2565–2569

    Article  CAS  Google Scholar 

  63. Kim H, Lee K, Woo S I, Jung Y. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Physical Chemistry Chemical Physics. 2011, 13(39): 17505–17510

    Article  CAS  Google Scholar 

  64. Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy & Environmental Science. 2011, 4(3): 760–764

    Article  CAS  Google Scholar 

  65. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources. 2009, 187(1): 93–97

    Article  CAS  Google Scholar 

  66. Nagaiah T C, Kundu S, Bron M, Muhler M, Schuhmann W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications. 2010, 12(3): 338–341

    Article  CAS  Google Scholar 

  67. Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science. 2012, 5(7): 7936–7942

    Article  CAS  Google Scholar 

  68. Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society. 2010, 132(43): 15127–15129

    Article  CAS  Google Scholar 

  69. Wiggins-Camacho J D, Stevenson K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. Journal of Physical Chemistry C. 2011, 115(40): 20002–20010

    Article  CAS  Google Scholar 

  70. Liu G, Li X, Ganesan P, Popov B N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta. 2010, 55(8): 2853–2858

    Article  CAS  Google Scholar 

  71. Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. Journal of Physical Chemistry C. 2009, 113(32): 14302–14310

    Article  CAS  Google Scholar 

  72. Olson T S, Pylypenko S, Atanassov P, Asazawa K, Yamada K, Tanaka H. Anion-exchange membrane fuel cells: Dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. Journal of Physical Chemistry C. 2010, 114(11): 5049–5059

    Article  CAS  Google Scholar 

  73. Higgins D, Chen Z, Chen Z. Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. Electrochimica Acta. 2011, 56(3): 1570–1575

    Article  CAS  Google Scholar 

  74. Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. Journal of Physical Chemistry Letters. 2010, 1(18): 2622–2627

    Article  CAS  Google Scholar 

  75. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry. 2011, 21(22): 8038–8044

    Article  CAS  Google Scholar 

  76. Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis. 2006, 239(1): 83–96

    Article  CAS  Google Scholar 

  77. Yang Z, Nie H, Chen X, Chen X, Huang S. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. Journal of Power Sources. 2013, 236: 238–249

    Article  CAS  Google Scholar 

  78. Zhao A, Masa J, Schuhmann W, Xia W. Activation and stabilization of nitrogen-doped carbon nanotubes as electrocatalysts in the oxygen reduction reaction at strongly alkaline conditions. Journal of Physical Chemistry C. 2013, 117(46): 24283–24291

    Article  CAS  Google Scholar 

  79. Ma Y, Zhang L, Li J, Ni H, Li M, Zhang J, Feng X, Fan Q, Hu Z, Huang W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chinese Science Bulletin. 2011, 56(33): 3583–3589

    Article  CAS  Google Scholar 

  80. Artyushkova K, Pylypenko S, Olson T S, Fulghum J E, Atanassov P. Predictive modeling of electrocatalyst structure based on structure-to-property correlations of X-ray photoelectron spectroscopic and electrochemical measurements. Langmuir. 2008, 24(16): 9082–9088

    Article  CAS  Google Scholar 

  81. Wiggins-Camacho J D, Stevenson K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes. Journal of Physical Chemistry C. 2011, 115(40): 20002–20010

    Article  CAS  Google Scholar 

  82. Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995, 33(11): 1641–1653

    Article  CAS  Google Scholar 

  83. Silva R, Voiry D, Chhowalla M, Asefa T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. Journal of the American Chemical Society. 2013, 135(21): 7823–7826

    Article  CAS  Google Scholar 

  84. Li M, Zhang L, Xu Q, Niu J, Xia Z. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis. 2014, 314: 66–72

    Article  CAS  Google Scholar 

  85. Gao F, Zhao G L, Yang S. Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catalysis. 2014, 4(5): 1267–1273

    Article  CAS  Google Scholar 

  86. Li Q, Noffke B W, Wang Y, Menezes B, Peters D G, Raghavachari K, Li L. Electrocatalytic oxygen activation by carbanion intermediates of nitrogen-doped graphitic carbon. Journal of the American Chemical Society. 2014, 136(9): 3358–3361

    Article  CAS  Google Scholar 

  87. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition. 2011, 50(31): 7132–7135

    Article  CAS  Google Scholar 

  88. Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry. 2012, 22(2): 390–395

    Article  CAS  Google Scholar 

  89. Jo G, Shanmugam S. Single-step synthetic approach for borondoped carbons as a non-precious catalyst for oxygen reduction in alkaline medium. Electrochemistry Communications. 2012, 25: 101–104

    Article  CAS  Google Scholar 

  90. Yang L, Zhao Y, Chen S, Wu Q, Wang X, Hu Z. A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chinese Journal of Catalysis. 2013, 34(11): 1986–1991

    Article  CAS  Google Scholar 

  91. Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angewandte Chemie International Edition. 2011, 50(14): 3257–3261

    Article  CAS  Google Scholar 

  92. Liu Z, Peng F, Wang H, Yu H, Tan J, Zhu L. Novel phosphorusdoped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications. 2011, 16(1): 35–38

    Article  CAS  Google Scholar 

  93. Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced Materials. 2013, 25(35): 4932–4937

    Article  CAS  Google Scholar 

  94. Yang D S, Bhattacharjya D, Inamdar S, Park J, Yu J S. Phosphorusdoped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Journal of the American Chemical Society. 2012, 134(39): 16127–16130

    Article  CAS  Google Scholar 

  95. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano. 2012, 6(1): 205–211

    Article  CAS  Google Scholar 

  96. Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X, Huang S. Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale. 2012, 4(20): 6455–6460

    Article  CAS  Google Scholar 

  97. Zhang L, Niu J, Dai L, Xia Z. Effect of microstructure of nitrogendoped graphene on oxygen reduction activity in fuel cells. Langmuir. 2012, 28(19): 7542–7550

    Article  CAS  Google Scholar 

  98. Zhang L, Xia Z. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. Journal of Physical Chemistry C. 2011, 115(22): 11170–11176

    Article  CAS  Google Scholar 

  99. Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W. Manageable N-doped graphene for high performance oxygen reduction reaction. Scientific Reports. 2013, 3: 2771

    Google Scholar 

  100. Choi C H, Park S H, Woo S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chemistry. 2011, 13(2): 406–412

    Article  CAS  Google Scholar 

  101. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns E J, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society. 2011, 133(46): 18522–18525

    Article  CAS  Google Scholar 

  102. Yao Z, Nie H, Yang Z, Zhou X, Liu Z, Huang S. Catalyst-free synthesis of iodine-doped grapheme via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications. 2012, 48(7): 1027–1029

    Article  CAS  Google Scholar 

  103. Jeon I Y, Choi H J, Choi M, Seo J M, Jung S M, KimMJ, Zhang S, Zhang L, Xia Z, Dai L, Park N, Baek J B. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports. 2013, 3: 1830

    Google Scholar 

  104. Sun X, Zhang Y, Song P, Pan J, Zhuang L, Xu W, Xing W. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catalysis. 2013, 3(8): 1726–1729

    Article  CAS  Google Scholar 

  105. Ozaki J, Kimura N, Anahara T, Oya A. Preparation and oxygen reduction activity of BN-doped carbons. Carbon. 2007, 45(9): 1847–1853

    Article  CAS  Google Scholar 

  106. Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen. Angewandte Chemie International Edition. 2011, 50(49): 11756–11760

    Article  CAS  Google Scholar 

  107. Wang S, Zhang L, Xia Z, Roy A, Chang D W, Baek J B, Dai L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angewandte Chemie International Edition. 2012, 51(17): 4209–4212

    Article  CAS  Google Scholar 

  108. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angewandte Chemie International Edition. 2013, 52(11): 3110–3116

    Article  CAS  Google Scholar 

  109. Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z. Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes? Journal of the American Chemical Society, 2013, 135(4): 1201–1204

    Article  CAS  Google Scholar 

  110. Jin J, Pan F, Jiang L, Fu X, Liang A, Wei Z, Zhang J, Sun G. Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano. 2014, 8(4): 3313–3321

    Article  CAS  Google Scholar 

  111. Yu D, Xue Y, Dai L. Vertically aligned carbon nanotube arrays Codoped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. Journal of Physical Chemistry Letters. 2012, 3(19): 2863–2870

    Article  CAS  Google Scholar 

  112. Nasini U B, Gopal Bairi V, Kumar Ramasahayam S, Bourdo S E, Viswanathan T, Shaikh A U. Oxygen reduction reaction studies of phosphorus and nitrogen Co-doped mesoporous carbon synthesized via microwave technique. ChemElectroChem. 2014, 1(3): 573–579

    Article  CAS  Google Scholar 

  113. Choi C H, Park S H, Woo S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon. Journal of Materials Chemistry. 2012, 22(24): 12107–12115

    Article  CAS  Google Scholar 

  114. Jiang H, Zhu Y, Feng Q, Su Y, Yang X, Li C. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions. Chemistry. 2014, 20(11): 3106–3112

    Article  CAS  Google Scholar 

  115. Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dualdoped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition. 2012, 51(46): 11496–11500

    Article  CAS  Google Scholar 

  116. Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale. 2013, 5(8): 3283–3288

    Article  CAS  Google Scholar 

  117. Wohlgemuth S A, White R J, Willinger M G, Titirici M M, Antonietti M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chemistry. 2012, 14(5): 1515–1523

    Article  CAS  Google Scholar 

  118. Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X. Lowtemperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon. 2013, 62: 296–301

    Article  CAS  Google Scholar 

  119. Choi C H, Chung M W, Park S H, Woo S I. Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media. Physical Chemistry Chemical Physics. 2013, 15(6): 1802–1805

    Article  CAS  Google Scholar 

  120. Xu P, Wu D, Wan L, Hu P, Liu R. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction. Journal of Colloid and Interface Science. 2014, 421: 160–164

    Article  CAS  Google Scholar 

  121. Cui Z, Wang S, Zhang Y, Cao M. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. Journal of Power Sources. 2014, 259: 138–144

    Article  CAS  Google Scholar 

  122. You C, Liao S, Li H, Hou S, Peng H, Zeng X, Liu F, Zheng R, Fu Z, Li Y. Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon. 2014, 69: 294–301

    Article  CAS  Google Scholar 

  123. Wang J, Xu Z, Gong Y, Han C, Li H, Wang Y. One-step production of sulfur and nitrogen Co-doped graphitic carbon for oxygen reduction: Activation effect of oxidized sulfur and nitrogen. ChemCatChem. 2014, 6(5): 1204–1209

    CAS  Google Scholar 

  124. Ramasahayam S K, Nasini U B, Bairi V, Shaikh A U, Viswanathan T. Microwave assisted synthesis and characterization of silicon and phosphorous co-doped carbon as an electrocatalyst for oxygen reduction reaction. RSC Advances. 2014, 4(12): 6306–6313

    Article  CAS  Google Scholar 

  125. Sun X, Song P, Zhang Y, Liu C, Xu W, Xing W. A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Scientific Reports. 2013, 3: 2505

    Google Scholar 

  126. Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano. 2012, 6(8): 7084–7091

    Article  CAS  Google Scholar 

  127. Zhang L, Niu J, Dai L, Xia Z. Effect of microstructure of nitrogendoped graphene on oxygen reduction activity in fuel cells. Langmuir. 2012, 28(19): 7542–7550

    Article  CAS  Google Scholar 

  128. Li Q, Zhang S, Dai L, Li L. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society. 2012, 134(46): 18932–18935

    Article  CAS  Google Scholar 

  129. Wu Z, Benchafia E M, Iqbal Z, Wang X. N8—polynitrogen stabilized on multi-wall carbon nanotubes for oxygen-reduction reactions at ambient conditions. Angewandte Chemie International Edition. 2014, 53(46): 12555–12559

    CAS  Google Scholar 

  130. Abou-Rachid H, Hu A, Timoshevskii V, Song Y, Lussier L S. Nanoscale high energetic materials: A polymeric nitrogen chain N8 confined inside a carbon nanotube. Physical Review Letters. 2008, 100(19): 196401

    Article  CAS  Google Scholar 

  131. Hirshberg B, Gerber R B, Krylov A I. Calculations predict a stable molecular crystal of N8. Nature Chemistry. 2013, 6(1): 52–56

    Article  CAS  Google Scholar 

  132. Rodney J Bartlett S F. Structure and stability of polynitrogen molecules and their spectroscopic Characteristics. 2001

    Google Scholar 

  133. Zhang P, Xiao B B, Hou X L, Zhu Y F, Jiang Q. Layered SiC sheets: A potential catalyst for oxygen reduction reaction. Scientific Reports. 2014, 4: 3821

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqin Wang.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Iqbal, Z. & Wang, X. Metal-free, carbon-based catalysts for oxygen reduction reactions. Front. Chem. Sci. Eng. 9, 280–294 (2015). https://doi.org/10.1007/s11705-015-1524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1524-4

Keywords

Navigation