Skip to main content
Log in

β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A novel method for the preparation of β-cyclodextrin grafted graphene oxide (GO-β-CD) has been developed. The GO-β-CD was characterized by Fourier transform infrared spectroscopy, 13C NMR spectroscopy, Raman spectroscopy and thermogravimetric analysis. The ability of GO-β-CD to remove fuchsin acid from solution was also studied. The GO-β-CD had an excellent adsorption capacity for fuchsin acid and could be recycled and reused. The adsorption capacities of GO-β-CD for other dye pollutants such as methyl orange and methylene blue were also investigated. The absorption capacities for the three dyes are in the order: fuchsin acid>methylene blue>methyl orange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noll K E. Adsorption Technology for Air and Water Pollution Control. CRC Press, 1991, 8–13

    Google Scholar 

  2. Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 1324–1340

    Article  CAS  Google Scholar 

  3. Aksu Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 2005, 40(3–4): 997–1026

    Article  CAS  Google Scholar 

  4. Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chemical Communications (Cambridge), 2011, 47(25): 7054–7056

    Article  CAS  Google Scholar 

  5. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Article  CAS  Google Scholar 

  6. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  Google Scholar 

  7. Craciun M, Russo S, Yamamoto M, Tarucha S. Tuneable electronic properties in graphene. Nano Today, 2011, 6(1): 42–60

    Article  CAS  Google Scholar 

  8. Frank I, Tanenbaum D M, van der Zande A M, McEuen P L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2007, 25(6): 2558–2561

    Article  CAS  Google Scholar 

  9. Han Z, Kimouche A, Kalita D, Allain A, Arjmandi-Tash H, Reserbat-Plantey A, Marty L, Pairis S, Reita V, Bendiab N, Coraux J, Bouchiat V. Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Advanced Functional Materials, 2013, 24(7): 964–970

    Article  Google Scholar 

  10. Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(2): 196–205

    Article  CAS  Google Scholar 

  11. Xu J, Lv H, Yang S T, Luo J. Preparation of graphene adsorbents and their applications in water purification. Reviews in Inorganic Chemistry, 2013, 33(2–3): 139–160

    CAS  Google Scholar 

  12. Fan L, Luo C, Li X, Lu F, Qiu H, Sun M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of Hazardous Materials, 2012, 215: 272–279

    Article  Google Scholar 

  13. Fan L, Luo C, Sun M, Li X, Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces. B, Biointerfaces, 2013, 103: 523–529

    Article  CAS  Google Scholar 

  14. Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X. Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry, 2012, 22(8): 3527–3535

    Article  CAS  Google Scholar 

  15. Szejtli J. Cyclodextrins and their inclusion complexes. Akadémiai Kiadó Budapest, 1982, 4–12

    Google Scholar 

  16. Bhattarai B, Muruganandham M, Suri R P S. Development of high efficiency silica coated β-cyclodextrin polymeric adsorbent for the removal of emerging contaminants of concern from water. Journal of Hazardous Materials, 2014, 273: 146–154

    Article  CAS  Google Scholar 

  17. Mahlambi M M, Malefetse T J, Mamba B B, Krause R W. β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: Synthesis and characterization. Journal of Polymer Research, 2010, 17(4): 589–600

    Article  CAS  Google Scholar 

  18. Mamba B, Krause R, Malefetse T J, Nxumalo E N. Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environmental Chemistry Letters, 2007, 5(2): 79–84

    Article  CAS  Google Scholar 

  19. Guo Y, Guo S, Li J, Wang E, Dong S. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta, 2011, 84(1): 60–64

    Article  CAS  Google Scholar 

  20. Wu S, Lan X, Cui L, Zhang L, Tao S, Wang H, Han M, Liu Z, Meng C. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Analytica Chimica Acta, 2011, 699(2): 170–176

    Article  CAS  Google Scholar 

  21. Chen M, Meng Y, Zhang W, Zhou J, Xie J, Diao G. β-Cyclodextrin polymer functionalized reduced-graphene oxide: Application for electrochemical determination imidacloprid. Electrochimica Acta, 2013, 108: 1–9

    Article  Google Scholar 

  22. Badruddoza A, Tay A, Tan P Y, Hidajat K, Uddin M S. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Journal of Hazardous Materials, 2011, 185(2–3): 1177–1186

    Article  CAS  Google Scholar 

  23. Fan L, Luo C, Sun M, Qiu H. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. Journal of Materials Chemistry, 2012, 22(47): 24577–24583

    Article  CAS  Google Scholar 

  24. Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Colloids and Surfaces. B, Biointerfaces, 2013, 107: 76–83

    Article  CAS  Google Scholar 

  25. Liu W, Li C. One-step synthesis of β-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol. Electroanalysis, 2013, 25(10): 2367–2376

    CAS  Google Scholar 

  26. Xu C, Wang J, Wan L, Lin J, Wang X. Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. Journal of Materials Chemistry, 2011, 21(28): 10463–10471

    Article  CAS  Google Scholar 

  27. Asouhidou D D, Triantafyllidis K S, Lazaridis N K, Matis K A. Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346(1–3): 83–90

    Article  CAS  Google Scholar 

  28. Ozmen E Y, Sirit A, Yilmaz M. A calix 4 arene oligomer and two beta-cyclodextrin polymers: Synthesis and sorption studies of azo dyes. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2007, 44(2): 167–173

    Article  CAS  Google Scholar 

  29. Yilmaz E, Memon S, Yilmaz M. Removal of direct azo dyes and aromatic amines from aqueous solutions using two beta-cyclodextrin-based polymers. Journal of Hazardous Materials, 2010, 174(1–3): 592–597

    Article  CAS  Google Scholar 

  30. Zhang X M, Peng C S, Xu G C. Synthesis of modified betacyclodextrin polymers and characterization of their fuchsin adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72(1–2): 165–171

    Article  CAS  Google Scholar 

  31. Lerf A, He H Y, Forster M, Klinowski J. Structure of graphite oxide revisited. Journal of Physical Chemistry B, 1998, 102(23): 4477–4482

    Article  CAS  Google Scholar 

  32. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S B T, Ruoff R S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565

    Article  CAS  Google Scholar 

  33. Peng C, Hai W L. Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration. ACS Nano, 2011, 5(7): 5928–5935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, Y., Fan, X. et al. β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants. Front. Chem. Sci. Eng. 9, 77–83 (2015). https://doi.org/10.1007/s11705-014-1450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1450-x

Keywords

Navigation