Skip to main content
Log in

Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Grasses (family Poaceae) are economically important plants; they are used as crops and animal foods. Stipagrostis plumosa (L.) Munro ex T. Anderson is a member of this family and subjected to chemical and biological studies. The chromatographic techniques,  LC–ESI–MS and GC/MS were used for identification of polar and non-polar compounds in its extract. Ten compounds, including one new flavone glycoside; tricin 7-O-galactoside, three known flavones, three C-glycosyl flavones and three phenolic acids, were isolated from S. plumosa for the first time except tricin. Their structures were elucidated on the basis of extensive spectroscopic interpretation. In addition to the isolated compounds, eleven compounds were tentatively identified using LC–ESI–MS, five of them were detected for the first time from this species. 29 non polar compounds were identified using GC–MS analysis, representing 83.13% of S. plumosa diethyl ether extract. In addition to the DPPH activity evaluation, the crude extract and the isolated compounds were investigated against five human carcinoma cell lines; A549, HCT-116, HepG2, MCF-7 and PC3 at a concentration of 100 μg/ml. From the isolated compounds tricin and luteolin 6,8-di-C-glucoside could be considered as natural-free radical scavenging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkader MSA, Orabi MAA, Shama SM, Assaf MH (2016) Chemical constituents and biological activities of the aerial parts of Stipagrostis plumosa (L) Munro ex T Anderson. J Pharm Sci Res 8:801–812

    CAS  Google Scholar 

  • Adams RP (1989) Identification of essential oil components by gas chromatography/mass spectroscopy. Academic Press, Allured Publishing Corporation, USA

    Google Scholar 

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, USA

    Google Scholar 

  • Adams RP (2009) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Business Media, USA

    Google Scholar 

  • Al-Sodany YM, Bazaid SA, Mosallam HA (2013) Medicinal plants in Saudi Arabia: I. Sarrwat Mt Taif KSA Acad J Plant Sci 6:134–145. doi:10.5829/idosi.ajps.2013.6.4.1115

    Google Scholar 

  • Boulos L (2005) Flora of Egypt, vol 4. Al Hadara Publishing, Cairo

    Google Scholar 

  • Boulos L, Fahmy AG (2007) Grasses in Ancient Egypt. Kew Bull 62:507–511

    Google Scholar 

  • Chen GY, Dai CY, Wang TS, Jiang CW, Han CR, Song XP (2010) A new flavonol from the stem-bark of Premna fulva. Arkivoc II. doi:10.3998/ark.5550190.0011.213

    Google Scholar 

  • El Semary NA, Ghazy SM, Abd El Naby MM (2009) Investigating the taxonomy and bioactivity of an Egyptian Chlorococcum isolate. Aust J Basic Appl Sci 3:1540–1551

    Google Scholar 

  • Farag MA, Otify A, Porzel A, Michel CG, Elsayed A, Wessjohann LA (2016) Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal Bioanal Chem 408:3125–3143. doi:10.1007/s00216-016-9376-4

    Article  CAS  Google Scholar 

  • Ferreres F, Gil-Izquierdo A, Andrade PB, Valentão P, Tomás-Barberán FA (2007) Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1161:214–223. doi:10.1016/j.chroma.2007.05.103

    Article  CAS  Google Scholar 

  • Figueirinha A, Paranho A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT (2008) Cymbopogon citratus leaves: characterization of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem 110:718–728. doi:10.1016/j.foodchem.2008.02.045

    Article  CAS  Google Scholar 

  • Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590

    CAS  Google Scholar 

  • Harborne JB, Williams CA (1976) Flavonoid patterns in leaves of the Gramineae. Biochem Syst Ecol 4:267–280. doi:10.1016/0305-1978(76)90051-X

    Article  CAS  Google Scholar 

  • He J, Yin T, Chen Y, Cai L, Tai Z, Li Z, Liu C, Wang Y, Ding Z (2015) Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J Funct Foods 17:371–379. doi:10.1016/j.jff.2015.05.045

    Article  CAS  Google Scholar 

  • Hussein SR, Kawashty SA, Tantawy ME, EL-Magly UIA, Saleh NAM (2017) Phenolics of selected species of Persicaria and Polygonum (Polygonaceae) in Egypt. Arab J Chem 10:76–81. doi:10.1016/j.arabjc.2012.06.002

    Article  CAS  Google Scholar 

  • Inamuddin M, Maghboub KM, Saquib M, Marwat KB, Khan MA, Ibrar M, Hussain F, Sultan A, Ahmad SS, Rashid A (2007) Embryological studies of Stipagrostis plumosa (L.) Munro ex T. Anderson. Pakis J Bot 39:313–317

    Google Scholar 

  • Kala SMJ, Balasubramanian T, Tresinasoris P, Mohan VR (2011) GC-MS determination of bioactive components of Eugenia singampattiana Bedd. Int J Chem Tech Res 3:1534–1537

    CAS  Google Scholar 

  • Kim MK, Yun KJ, Lim DH, Kim J, Jang YP (2016) Anti-inflammatory properties of flavone di-C-Glycosides as active principles of Camellia Mistletoe, Korthalsella japonica. Biomol Ther (Seoul) 24:630–637. doi:10.4062/biomolther.2016.019

    Article  Google Scholar 

  • Kumar PP, Kumaravel S, Lalitha C (2010) Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biomed Res 4:191–195

    Google Scholar 

  • Linard A, Delaveau P, Paris RR, Dellamonica G, Chopin J (1982) Isocarlinoside, a di-C-glycosylflavone from Lespedeza capitata. Phytochemistry 21:797–799. doi:10.1016/0031-9422(82)83197-X

    Article  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Book  Google Scholar 

  • Markham KR (1982) Techniques of flavonoid identification. Academic Press, London

    Google Scholar 

  • Moo-Puc JA, Martín-Quintal Z, Mirón-López G, Moo-Puc RE, Quijano L, Mena-Rejón GJ (2014) Isolation and antitrichomonal activity of the chemical constituents of the leaves of Maytenus Phyllanthoides Benth. (Celastraceae). Quim Nova 37:85–88. doi:10.1590/S0100-40422014000100016

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Oliveira DM, Siqueira EP, Nunes YRF, Cota BB (2013) Flavonoids from leaves of Mauritia flexuosa. Rev Bras Farmacogn 23:614–620. doi:10.1590/S0102-695X2013005000061

    Article  Google Scholar 

  • Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19:287–297

    Article  CAS  Google Scholar 

  • Seo KH, Park MJ, Ra JE, Han SI, Nam MH, Kim JH, Lee JH, Seo WD (2014) Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food func 5:3005–3013. doi:10.1039/c4fo00612g

    Article  CAS  Google Scholar 

  • Simirgiotis MJ, Schmeda-Hirschmann G, Bórquez J, Kennelly EJ (2013) The Passiflora tripartita (Banana Passion) Fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules 18:1672–1692. doi:10.3390/molecules18021672

    Article  CAS  Google Scholar 

  • Täckholm V (1974) Students’ flora of Egypt, 2nd edn. Cairo University, Cairo

    Google Scholar 

  • The Plant List (2010) The plant list, version 1 [Published on the internet]. [Cited Jan 1]. Available from: http://www.theplantlist.org/

  • Yang Z, Nakabayashi R, Okazaki Y, Mori T, Takamatsu S, Kitanaka S, Kikuchi J, Saito K (2014) Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics 10:543–555. doi:10.1007/s11306-013-0619-5

    Article  CAS  Google Scholar 

  • Zhang J, Wang Y, Zhang XQ, Zhang QW, Ye WC (2009) Chemical constituents from the leaves of Lophatherum gracile. Chin J Nat Med 7:428–431. doi:10.3724/SP.J.1009.2009.00428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Centre, Egypt [Grant Number 10010002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh R. Hussein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, S.R., Abdel Latif, R.R., Marzouk, M.M. et al. Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae). Chem. Pap. 72, 29–37 (2018). https://doi.org/10.1007/s11696-017-0254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0254-0

Keywords

Navigation