Skip to main content

Advertisement

Log in

Gastric Stimulation in the Digestive Period Modifies Length and Contractility of the Inter-digestive Period in Obese Non-diabetic and Diabetic Subjects

  • Physiology Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

The association between phase II of the motor migratory complex (MMC) and hunger remains poorly understood, which may be important in non-diabetic and diabetic obese subjects where gastric inter-digestive motility has been often reported as impaired. We characterize phase II of the MMC and its predictive power on food intake, weight loss, and glycemia in non-diabetic (OB) and diabetic (DM) obese subjects treated with gastric stimulation for 6 months.

Methods

Twelve OB and 12 DM subjects were implanted with bipolar electrodes connected to a gastric stimulator capable of recording antrum electromechanical activity.

Results

The phase II mean interval size and duration increased from 156 ± 121 to 230 ± 228 s and from 98 ± 33 to 130 ± 35 min (p < 0.05) in OB and from 158 ± 158 to180 ± 112 s and from 77 ± 26 to 109 ± 18 min (p < 0.05) in DM after 6 months. There was a significant trend of meals to interrupt the late rather than the early phase II. Nonlinear regression analysis demonstrated that weight loss in OB was significantly associated with the change in interval size of the late phase II and with phase II duration. In the DM group, weight loss and glycemia were also significantly associated with the change in the interval size of the early phase II.

Conclusions

Gastric stimulation delivered in the digestive period can modify the length of the MMC and the contractility in its longest component, phase II. The duration and contractility of the MMC can determine to some extent future intake and, thus, influence energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Code CF, Schlegel JF. The gastrointestinal interdigestive housekeeper: motor correlates of the interdigestive myoelectric complex of the dog. In: Daniel EE, editor. Proceedings of Fourth International Symposium on Gastrointestinal Motility. Vancouver: Mitchell Press Ltd.; 1974. p. 631–634.

    Google Scholar 

  2. Sarna SK. Cyclic motor activity; migrating motor complex. Gastroenterology. 1985;89:894.

    PubMed  CAS  Google Scholar 

  3. Chung SA, Rotstein O, Greenberg GR, et al. Mechanisms coordinating gastric and small intestinal MMC: role of extrinsic innervation rather than motilin. Am J Physiol. 1994;267:G800–9.

    PubMed  CAS  Google Scholar 

  4. Torsoli A, Severi C. The neuroendocrine control of gastrointestinal motor activity. J Physiol Paris. 1993;8:367–74.

    Google Scholar 

  5. Romański KW. Mechanisms controlling the gastrointestinal migrating motor complex. JPCCR. 2009;3:11–9.

    Google Scholar 

  6. Gielkens HA, van den Biggelaar A, Vecht J, et al. Effect of intravenous amino acids on interdigestive antroduodenal motility and small bowel transit time. Gut. 1999;44:240–5.

    Article  PubMed  CAS  Google Scholar 

  7. Janssen P, Vanden Berghe P, Verschueren S, et al. Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther. 2011;33:880–94.

    Article  PubMed  CAS  Google Scholar 

  8. LeSauter J, Hoque N, Weintraub M, et al. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci U S A. 2009;106:13582–7.

    Article  PubMed  CAS  Google Scholar 

  9. Goel N, Stunkard AJ, Rogers NL, et al. Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythms. 2009;24:85–94.

    Article  PubMed  CAS  Google Scholar 

  10. Sanger GJ, Hellström PM, Näslund E. The hungry stomach: physiology, disease, and drug development opportunities. Front Pharmacol. 2010;1:1–12.

    Article  Google Scholar 

  11. Chen J. Mechanisms of action of the implantable gastric stimulator for obesity. Obes Surg. 2004;14 Suppl 1:S28–32.

    Article  PubMed  Google Scholar 

  12. Bohdjalian A, Prager G, Aviv R, et al. One-year experience with Tantalus: a new surgical approach to treat morbid obesity. Obes Surg. 2006;16:627–34.

    Article  PubMed  Google Scholar 

  13. Bohdjalian A, Prager G, Rosak C, et al. Improvement in glycemic control in morbidly obese type 2 diabetic subjects by gastric stimulation. Obes Surg. 2009;19:1221–7.

    Article  PubMed  Google Scholar 

  14. Peles S, Petersen J, Aviv R, et al. Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation. Am J Physiol Gastrointest Liver Physiol. 2003;285:G577–85.

    PubMed  CAS  Google Scholar 

  15. Aviv R, Policker S, Brody F, et al. Circadian patterns of gastric electrical and mechanical activity in dogs. Neurogastroenterol Motil. 2008;20:63–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hall KE, el-Sharkawy TY, Diamant NE. Vagal control of canine postprandial upper gastrointestinal motility. Am J Physiol. 1986;250:G501–10.

    PubMed  CAS  Google Scholar 

  17. Rees WD, Malagelada JR, Miller LJ, et al. Human interdigestive and postprandial gastrointestinal motor and gastrointestinal hormone patterns. Dig Dis Sci. 1982;27:321–9.

    Article  PubMed  CAS  Google Scholar 

  18. Schönfeld J, Evans DF, Wingate DL. Daytime and night time motor activity of the small bowel after solid meals of different caloric value in humans. Gut. 1997;40:614–8.

    PubMed  Google Scholar 

  19. Sanmiguel CP, Aviv R, Policker S, et al. Association between gastric electromechanical activity and satiation in dogs. Obesity (Silver Spring). 2007;15:2958–63.

    Article  Google Scholar 

  20. Dent J, Dodds WJ, Sekiguchi T, et al. Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology. 1983;84:453–60.

    PubMed  CAS  Google Scholar 

  21. Oberle RL, Chen TS, Lloyd C, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990;99:1275–82.

    PubMed  CAS  Google Scholar 

  22. Mollen RM, Hopman WP, Kuijpers HH, et al. Abnormalities of upper gut motility in patients with slow-transit constipation. Eur J Gastroenterol Hepatol. 1999;11:701–8.

    Article  PubMed  CAS  Google Scholar 

  23. Gielkens HA, Nieuwenhuizen A, Biemond I, et al. Interdigestive antroduodenal motility and gastric acid secretion. Aliment Pharmacol Ther. 1998;12:27–33.

    Article  PubMed  CAS  Google Scholar 

  24. Dooley CP, Di Lorenzo C, Valenzuela JE. Variability of migrating motor complex in humans. Dig Dis Sci. 1992;37:723–8.

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka T, Kendrick ML, Zyromski NJ, et al. Vagal innervation modulates motor pattern but not initiation of canine gastric migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 2001;281:G283–92.

    PubMed  CAS  Google Scholar 

  26. Björnsson ES, Urbanavicius V, Eliasson B, et al. Effects of hyperglycemia on interdigestive gastrointestinal motility in humans. Scand J Gastroenterol. 1994;29:1096–104.

    Article  PubMed  Google Scholar 

  27. Kawagishi T, Nishizawa Y, Emoto M, et al. Gastric myoelectrical activity in patients with diabetes. Role of glucose control and autonomic nerve function. Diabetes Care. 1997;20:848–54.

    Article  PubMed  CAS  Google Scholar 

  28. Barnett JL, Owyang C. Serum glucose concentration as a modulator of interdigestive gastric motility. Gastroenterology. 1988;94:739–44.

    PubMed  CAS  Google Scholar 

  29. Lam WF, Masclee AA, De Boer SY, et al. Hyperglycaemia reduces gastrin-stimulated gastric acid secretion in humans. Eur J Clin Investig. 1998;28:826–30.

    Article  CAS  Google Scholar 

  30. Camilleri M, Toouli J, Herrera MF, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143:723–31.

    Article  PubMed  CAS  Google Scholar 

  31. Xu L, Sun X, Tang M, et al. Involvement of the hippocampus and neuronal nitric oxide synthase [correction of synapse] in the gastric electrical stimulation therapy for obesity. Obes Surg. 2009;19:475–83.

    Article  PubMed  Google Scholar 

  32. Tang M, Zhang J, Xu L, et al. Implantable gastric stimulation alters expression of oxytocin- and orexin-containing neurons in the hypothalamus of rats. Obes Surg. 2006;16:762–9.

    Article  PubMed  Google Scholar 

  33. Wang GJ, Yang J, Volkow ND, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci. 2006;103:15641–5.

    Article  PubMed  CAS  Google Scholar 

  34. Zietlow A, Nakajima H, Taniguchi H, et al. Association between plasma ghrelin and motilin levels during MMC cycle in conscious dogs. Regul Pept. 2010;164:78–82.

    Article  PubMed  CAS  Google Scholar 

  35. Scarpellini E, Vos R, Depoortere I, et al. Motilin is a hunger hormone in man. Gastroenterology. 2009;A-328.

  36. Ang DC, Nicolai H, Vos R, et al. Gastric phase 3 is a hunger signal in the interdigestive state in man. Gastroenterology. 2008;134:A314.

    Google Scholar 

  37. Natalucci G, Riedl S, Gleiss A, et al. Spontaneous 24-h ghrelin secretion pattern in fasting subjects: maintenance of a meal-related pattern. Eur J Endocrinol. 2005;152:845–50.

    Article  PubMed  CAS  Google Scholar 

  38. Sanmiguel CP, Haddad W, Aviv R, et al. The TANTALUS system for obesity: effect on gastric emptying of solids and ghrelin plasma levels. Obes Surg. 2007;17:1503–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank all personnel involved in this study. The study was supported by a grant from Metacure Germany GmbH, manufacturer of the Tantalus™.

Conflict of Interest Statement

Dr. Ricardo Aviv is an employee of Metacure Germany GmbH, Department of Research and Development. All other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bohdjalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohdjalian, A., Aviv, R., Prager, G. et al. Gastric Stimulation in the Digestive Period Modifies Length and Contractility of the Inter-digestive Period in Obese Non-diabetic and Diabetic Subjects. OBES SURG 22, 1465–1472 (2012). https://doi.org/10.1007/s11695-012-0703-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0703-3

Keywords

Navigation