Skip to main content
Log in

Rapid assessment of pork freshness using miniaturized NIR spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The freshness of meat is an important quality attribute. Thiobarbituric Acid Reactive Substances (TBARS), a classical marker of lipid oxidation, is used as an indicator of freshness in meat. This study investigated the application of a miniaturized and portable Near Infrared (NIR) spectroscopy (1100–2200 nm) for rapid monitoring of TBARS in minced pork stored at 4 °C for 0, 2, 4 and 8 days. NIR data was pre-treated with standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky Golay first derivative (FD). Models developed, based on full wavelengths, using partial least square regression (PLSR) showed good results in terms of their coefficients of determination (R2). The optimized result was obtained from MSC with R2 of 0.844 and RMSE of 0.099 mg MDA/kg meat in the prediction. To build a simpler model, optimal wavelengths were selected by successive projection algorithm (SPA) and weighted regression coefficients (RC) and used to develop four new models based on PLSR and MLR algorithms (SPA-PLSR, SPA-MLR, RC-PLSR, RC-MLR). The simplified model (RC-PLSR) revealed good results with R2p of 0.830 and RMSE of 0.068 mg MDA /kg meat. The promising result in this study indicated the potential of using a miniaturized NIR spectroscopy as a good handheld tool for rapid monitoring of TBARS values for assessment of freshness in minced pork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.I. Kademi, B.H. Ulusoy and C. Hecer, Food Rev. Int. 35, 201–220 (2019). https://doi.org/10.1080/87559129.2018.1514624

    Article  CAS  Google Scholar 

  2. S. Lee, T. G. Noh, J. H. Choi, J. Han, J. Y. Ha, J. Y. Lee, Y. Park, Proc.SPIE, (2017) https://doi.org/10.1117/12.2261803

    Article  Google Scholar 

  3. X. Wu, H. Fu, X. Tian, B. Wu, J. Sun, J. Food Process Eng. 40, e12566 (2017). https://doi.org/10.1111/jfpe.12566

    Article  Google Scholar 

  4. X. Wang, M. Zhao, R. Ju, Q. Song, D. Hua, C. Wang, T. Chen, Comput. Electron. Agric. 99, 41–53 (2013). https://doi.org/10.1016/j.compag.2013.08.025

    Article  Google Scholar 

  5. K. Horváth, Z. Seregély, É. Andrássy, I. Dalmadi, J. Farkas, Acta Aliment. 37, 93–102 (2008). https://doi.org/10.1556/AAlim.37.2008.1.9

    Article  Google Scholar 

  6. F. Qu, D. Ren, Y. He, P. Nie, L. Lin, C. Cai, T. Dong, Meat Sci. 146, 59–67 (2018). https://doi.org/10.1016/j.meatsci.2018.07.023

    Article  CAS  PubMed  Google Scholar 

  7. M. Schmutzler, A. Beganovic, G. Böhler, C.W. Huck, NIR News 27, 11–13 (2016). https://doi.org/10.1255/nirn.1610

    Article  Google Scholar 

  8. W. Wei, Y. Peng, L. Qiao, Proc.SPIE, (2016). https://doi.org/10.1117/12.2223300

    Article  Google Scholar 

  9. E. Zamora-Rojas, D. Marín, E. De Pedro-Sanz, J.E. Ginel, A. -Varo, Meat Sci. 90, 636–642 (2012). https://doi.org/10.1016/j.meatsci.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  10. W. Wang, Y. Peng, F. Wang, H. Sun, Proc. SPIE 10217, 102170R (2017). https://doi.org/10.1117/12.2262508

    Article  Google Scholar 

  11. M. Juárez, M.E.R. Dugan, I.L. Larsen, R. Thacker, D.C. Rolland, J.L. Aalhus, Can J Anim Sci 91, 623–634 (2011). https://doi.org/10.4141/cjas2011-059

    Article  Google Scholar 

  12. E.N. Frankel, J. Am. Oil Chem. Soc. 61, 1908–1917 (1984). https://doi.org/10.1007/bf02540830

    Article  CAS  Google Scholar 

  13. P.R. Sheard, M. Enser, J.D. Wood, G.R. Nute, B.P. Gill, R.I. Richardson, Meat Sci. 55, 213–221 (2000). https://doi.org/10.1016/S0309-1740(99)00145-X

    Article  CAS  PubMed  Google Scholar 

  14. B. Barriuso, I. Astiasarán, D. Ansorena, Eur. Food Res. Technol. 236, 1–15 (2013). https://doi.org/10.1007/s00217-012-1866-9

    Article  CAS  Google Scholar 

  15. K.V. Ramana, S. Srivastava, S.S. Singhal, Oxid. Med. Cell. Longev. 2013, 3 (2013). https://doi.org/10.1155/2013/583438

    Article  Google Scholar 

  16. J.I. Gray, F.J. Monahan, Trends Food Sci. Technol. 3, 315–319 (1992). https://doi.org/10.1016/S0924-2244(10)80019-6

    Article  CAS  Google Scholar 

  17. C.T. Kucha, L. Liu and M.O. Ngadi, Sensors (Basel, Switzerland) 18, 377 (2018). https://doi.org/10.3390/s18020377

    Article  CAS  Google Scholar 

  18. D.V. Hoyland, A.J. Taylor, Food Chem. 40, 271–291 (1991). https://doi.org/10.1016/0308-8146(91)90112-2

    Article  CAS  Google Scholar 

  19. J. Fernández, J.A. Álvarez, J.A. Fernández-López, Food Chem. 59, 345–353 (1997). https://doi.org/10.1016/S0308-8146(96)00114-8

    Article  Google Scholar 

  20. J.-H. Cheng, D.-W. Sun, H.-B. Pu, Q.-J. Wang, Y.-N. Chen, Food Chem. 171, 258–265 (2015). https://doi.org/10.1016/j.foodchem.2014.08.124

    Article  CAS  PubMed  Google Scholar 

  21. J.-H. Cheng, D.-W. Sun, J.-H. Qu, H.-B. Pu, X.-C. Zhang, Z. Song, X. Chen, H. Zhang, J. Food Eng. 182, 9–17 (2016). https://doi.org/10.1016/j.jfoodeng.2016.02.004

    Article  CAS  Google Scholar 

  22. Z. Xiong, D.-W. Sun, H. Pu, A. Xie, Z. Han, M. Luo, Food Chem. 179, 175–181 (2015). https://doi.org/10.1016/j.foodchem.2015.01.116

    Article  CAS  PubMed  Google Scholar 

  23. J.-L. Xu, C. Riccioli, D.-W. Sun, J. Food Eng. 169, 259–271 (2016). https://doi.org/10.1016/j.jfoodeng.2015.08.015

    Article  CAS  Google Scholar 

  24. X. Wu, X. Song, Z. Qiu, Y. He, Meat Sci. 113, 92–96 (2016). https://doi.org/10.1016/j.meatsci.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  25. G.F. Cifuni, A. Amici, M. Contò, P. Viola, S. Failla, Eur. J. Wildl. Res. 60, 519–526 (2014). https://doi.org/10.1007/s10344-014-0814-3

    Article  Google Scholar 

  26. G.F. Cifuni, M. Contò, S. Failla, J. Food Eng. 169, 85–90 (2016). https://doi.org/10.1016/j.jfoodeng.2015.08.029

    Article  CAS  Google Scholar 

  27. M.G. Karlsdottir, S. Arason, H.G. Kristinsson, K. Sveinsdottir, Food Chem. 159, 420–427 (2014). https://doi.org/10.1016/j.foodchem.2014.03.050

    Article  CAS  PubMed  Google Scholar 

  28. T.S. Park, Y.M. Bae, H.S. Seo, T.J. Park, K.H. Seol, D.K. Lim, M. Lee, S.I. Cho, Biol. Eng. 1, 173–180 (2008). https://doi.org/10.13031/2013.24477

    Article  CAS  Google Scholar 

  29. E.J.N. Marques, S.T. de Freitas, M.F. Pimentel, C. Pasquini, Food Chem. 197, 1207–1214 (2016). https://doi.org/10.1016/j.foodchem.2015.11.080

    Article  CAS  PubMed  Google Scholar 

  30. M. Casale, C. Casolino, P. Oliveri, M. Forina, Food Chem. 118, 163–170 (2010). https://doi.org/10.1016/j.foodchem.2009.04.091

    Article  CAS  Google Scholar 

  31. M. Alcalà, M. Blanco, D. Moyano, N. Broad, N. O’Brien, D. Friedrich, F. Pfeifer, H. Siesler, J. Near Infrared Spectrosc. 21, 445–457 (2013)

    Article  Google Scholar 

  32. G.H. Geesink, F.H. Schreutelkamp, R. Frankhuizen, H.W. Vedder, N.M. Faber, R.W. Kranen, M.A. Gerritzen, Meat Sci. 65, 661–668 (2003). https://doi.org/10.1016/S0309-1740(02)00269-3

    Article  CAS  PubMed  Google Scholar 

  33. Q. Dai, D.-W. Sun, J.-H. Cheng, H. Pu, X.-A. Zeng and Z. Xiong, Compr. Rev. Food Sci. Food Saf., 13, 1207–1218 (2014). https://doi.org/10.1111/1541-4337.12110

    Article  Google Scholar 

  34. M. Kamruzzaman, Y. Makino, S. Oshita, LWT Food Sci. Technol. 66, 685–691 (2016). https://doi.org/10.1016/j.lwt.2015.11.021

    Article  CAS  Google Scholar 

  35. D. Ballabio, V. Consonni, Anal. Methods 5, 3790–3798 (2013). https://doi.org/10.1039/C3AY40582F

    Article  CAS  Google Scholar 

  36. D. Yang, D. He, A. Lu, D. Ren, J. Wang, Infrared Phys. Technol. 83, 206–216 (2017). https://doi.org/10.1016/j.infrared.2017.05.005

    Article  Google Scholar 

  37. Q. Dai, D.-W. Sun, Z. Xiong, J.-H. Cheng, X.-A. Zeng, Compr. Rev. Food Sci. Food Saf. 13, 891–905 (2014). https://doi.org/10.1111/1541-4337.12088

    Article  Google Scholar 

  38. R. Ramírez, R. Cava, Meat Sci. 75, 388–396 (2007). https://doi.org/10.1016/j.meatsci.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  39. A. Orkusz, G. Haraf, A. Okruszek, M. Wereńska-Sudnik, Poult. Sci. (2016). https://doi.org/10.3382/ps/pew325

    Article  Google Scholar 

  40. D.F. Barbin, G. ElMasry, D.-W. Sun, P. Allen, Food Chem. 138, 1162–1171 (2013). https://doi.org/10.1016/j.foodchem.2012.11.120

    Article  CAS  PubMed  Google Scholar 

  41. N. Barlocco, A. Vadell, F. Ballesteros, G. Galietta, D. Cozzolino, Anim. Sci. 82, 111–116 (2006). https://doi.org/10.1079/ASC20055

    Article  Google Scholar 

  42. H. Huang, L. Liu, M.O. Ngadi, C. Gariépy, Talanta 119, 385–395 (2014). https://doi.org/10.1016/j.talanta.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  43. N. Prieto, R. Roehe, P. Lavín, G. Batten, S. Andrés, Meat Sci. 83, 175–186 (2009). https://doi.org/10.1016/j.meatsci.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  44. B. Park, Y.R. Chen, W.R. Hruschka, S.D. Shackelford, M. Koohmaraie, Trans. Am. Soc. Agric. Eng. 44, 609 (2001). https://doi.org/10.13031/2013.6087

    Article  Google Scholar 

  45. J. Brøndum, D.V. Byrne, L.S. Bak, G. Bertelsen, S.B. Engelsen, Meat Sci. 54, 83–95 (2000). https://doi.org/10.1016/S0309-1740(99)00085-6

    Article  PubMed  Google Scholar 

  46. D.M. Smith, J. Food Sci. 52, 22–27 (1987). https://doi.org/10.1111/j.1365-2621.1987.tb13965.x

    Article  CAS  Google Scholar 

  47. P. Hourant, V. Baeten, M.T. Morales, M. Meurens, R. Aparicio, Appl. Spectrosc. 54, 1168–1174 (2000)

    Article  CAS  Google Scholar 

  48. V. Somovilla, F. España-España, A.J. Gaitán-Jurado, J. Aparicio, E.J. De Pedro-Sanz, Food Chem. 101, 1031–1040 (2007). https://doi.org/10.1016/j.foodchem.2006.02.058

    Article  CAS  Google Scholar 

  49. P. Ritthiruangdej, R. Ritthiron, H. Shinzawa, Y. Ozaki, Food Chem. 129, 684–692 (2011). https://doi.org/10.1016/j.foodchem.2011.04.110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Ngadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucha, C.T., Ngadi, M.O. Rapid assessment of pork freshness using miniaturized NIR spectroscopy. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00360-9

Keywords

Navigation