Skip to main content
Log in

Determination of biogenic amines in Persian Gulf fish: application of stirrer bead milling extraction method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Biogenic amines forms in food by microbial enzymatic decarboxylation of amino acids and excessive consumption of these amines can be of health concern. Many techniques have been developed for the extraction of biogenic amines in food, including acidic or organic extraction as well as solid phase extraction. In this study, we described an alternative method based on a stirrer bead milling for extraction of biogenic amines from fish muscles. The rate and stirring time were optimized with an experimental design optimization procedure. The developed method was compared with the traditional homogenization extraction method. After a derivatization step with benzoyl chloride, samples were analyzed for amines quantitative determination with RP-HPLC system. The analysis method showed good linearity (correlation coefficients of 0.9989) and good recoveries (>94.23 %). The repeatability and reproducibility of the method, in terms of the relative standard deviation, ranged from 1.6 to 2.6 % and 3.3 to 4.9 % respectively. Moreover, the detection limits of biogenic amines were calculated between 0.05 and 0.09 mg kg−1 in fish samples. The proposed method has been applied to the analysis of different fish species of the Persian Gulf. Low biogenic amine levels were found in most fish samples. Total biogenic amine contents of selected samples were ≤68.3 mg kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Komprda, E. Rejchrtová, P. Sládková et al., Dairy Sci. Tech. 92(4), 367 (2012)

    Article  CAS  Google Scholar 

  2. B. Bach, P. Vuchot, M. Grinbaum et al., Anal. Chim. Acta 732, 114 (2012)

    Article  CAS  Google Scholar 

  3. B. Ten Brink, C. Damink, H. Joosten et al., Int. J. Food Mirobiol. 11(1), 73 (1990)

    Article  Google Scholar 

  4. M. Latorre-Moratalla, J. Bosch-Fusté, T. Lavizzari et al., J. Chromatogr. A 1216(45), 7715 (2009)

    Article  CAS  Google Scholar 

  5. A.R. Shalaby, Food Res. Int. 29(7), 675 (1996)

    Article  CAS  Google Scholar 

  6. E. Chiacchierini, D. Restuccia, G. Vinci, Talanta 69(3), 548 (2006)

    Article  CAS  Google Scholar 

  7. M. Křížek, F. Vácha, L. Vorlová et al., Food Chem. 88(2), 185 (2004)

    Article  Google Scholar 

  8. C. Ruiz-Capillas, A. Moral, Food Chem. 89(3), 347 (2005)

    Article  CAS  Google Scholar 

  9. G. Vinci, M. Antonelli, Food Control 13(8), 519 (2002)

    Article  CAS  Google Scholar 

  10. V. Ladero, M. Calles-Enriquez, M. Fernández et al., Curr. Nutr. Food Sci. 6(2), 145 (2010)

    Article  CAS  Google Scholar 

  11. J. Lange, K. Thomas, C. Wittmann, J. Chromatogr. B 779(2), 229 (2002)

    Article  CAS  Google Scholar 

  12. L. Prester, Food Addit. Contam. 28(11), 1547 (2011)

    Article  CAS  Google Scholar 

  13. S. Rodtong, S. Nawong, J. Yongsawatdigul, Food Microbiol. 22(5), 475 (2005)

    Article  CAS  Google Scholar 

  14. M. Křížek, K. Matějková, F. Vácha et al., Food Chem. 132(1), 367 (2012)

    Article  Google Scholar 

  15. S. Bardócz, Trends Food Sci. Technol. 6(10), 341 (1995)

    Article  Google Scholar 

  16. A. Halász, Á. Baráth, L. Simon-Sarkadi et al., Trends Food Sci. Technol. 5(2), 42 (1994)

    Article  Google Scholar 

  17. M.N. Clifford, R. Walker, Int. J. Food Sci. Technol. 27(6), 721 (1992)

    Article  Google Scholar 

  18. J. McLauchlin, C. Little, K. Grant et al., J. Public Health 28(1), 61 (2006)

    Article  CAS  Google Scholar 

  19. I.A. Bulushi, S. Poole, H.C. Deeth et al., Crit. Rev. Food Sci. Nutr. 49(4), 369 (2009)

    Article  Google Scholar 

  20. A.E. Ghaly, D. Dave, S. Budge et al., Am. J. Appl. Sci. 7(7), 859 (2010)

    Article  CAS  Google Scholar 

  21. Y.M. Jaw, Y.Y. Chen, Y.C. Lee et al., Fish. Sci. 78(1), 155 (2012)

    Article  CAS  Google Scholar 

  22. N. Innocente, M. Biasutti, M. Padovese et al., Food Chem. 101(3), 1285 (2007)

    Article  CAS  Google Scholar 

  23. S. Moret, L.S. Conte, J. Chromatogr. A 729(1), 363 (1996)

    Article  CAS  Google Scholar 

  24. S. Hernández-Cassou, J. Saurina, J. Chromatogr. B 879(17), 1270 (2011)

    Article  Google Scholar 

  25. C. Almeida, J. Fernandes, S. Cunha, Food Control 25(1), 380 (2012)

    Article  CAS  Google Scholar 

  26. A. Andrea, T. Lara, X. Xiong et al., Food Anal. Methods 7, 946 (2014)

    Article  Google Scholar 

  27. R.M. Taskova, H. Zorn, U. Krings et al., Z. Naturforsch. 61(5/6), 347 (2006)

    CAS  Google Scholar 

  28. A. Veide, L. Strandberg, S.O. Enfors, Enzyme Microb. Technol. 9(12), 730 (1987)

    Article  CAS  Google Scholar 

  29. G. Sagratini, M. Fernández-Franzón, F. De Berardinis et al., Food Chem. 132(1), 537 (2012)

    Article  CAS  Google Scholar 

  30. F. Aflaki, N. Saemian, Anal. Methods 6, 1482 (2013)

    Article  Google Scholar 

  31. J. Bakar, A. Yassoralipour, F.A. Bakar et al., Food Chem. 119(2), 467 (2010)

    Article  CAS  Google Scholar 

  32. S. Koral, B. Tufan, A. Ščavničar et al., Food Control 32(2), 597 (2013)

    Article  CAS  Google Scholar 

  33. M.A. Bezerra, R.E. Santelli, E.P. Oliveira et al., Talanta 76(5), 965 (2008)

    Article  CAS  Google Scholar 

  34. S. Moret, R. Bortolomeazzi, G. Lercker, J. Chromatogr. A 591(1), 175 (1992)

    Article  CAS  Google Scholar 

  35. C.W. Ho, W.S. Tan, W.B. Yap et al., Biotechnol. Bioprocess Eng. 13(5), 577 (2008)

    Article  CAS  Google Scholar 

  36. Y. Wang, E. Forssberg, Int. J. Miner. Process. 81(1), 1 (2006)

    Article  CAS  Google Scholar 

  37. H. Zhai, X. Yang, L. Li et al., Food Control 25(1), 303 (2012)

    Article  CAS  Google Scholar 

  38. F. Buňka, P. Budinský, B. Zimáková et al., Food Control 31(1), 49 (2013)

    Article  Google Scholar 

  39. C.-C. Hwang, C.-M. Lin, C.-Y. Huang et al., Food Control 25(1), 415 (2012)

    Article  CAS  Google Scholar 

  40. J.S. Park, C.H. Lee, E.Y. Kwon et al., Food Control 21(9), 1219 (2010)

    Article  CAS  Google Scholar 

  41. L. Prester, Food Addit. Contam. 28(11), 1547 (2011)

    Article  CAS  Google Scholar 

  42. L. Yongmei, L. Xin, C. Xiaohong et al., Food Chem. 100(4), 1424 (2007)

    Article  Google Scholar 

  43. M. Nout, Food Res. Int. 27(3), 291 (1994)

    Article  CAS  Google Scholar 

  44. M.H.S. Santos, Int. J. Food Mirobiol. 29(2–3), 213 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanik Ghoulipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aflaki, F., Ghoulipour, V., Saemian, N. et al. Determination of biogenic amines in Persian Gulf fish: application of stirrer bead milling extraction method. Food Measure 9, 86–94 (2015). https://doi.org/10.1007/s11694-014-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9213-4

Keywords

Navigation