Skip to main content
Log in

Signal Divergence is Correlated with Genetic Distance and not Environmental Differences in Darters (Percidae: Etheostoma)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Speciation research focuses on the evolutionary mechanisms responsible for the origin of species, and recent treatments have distinguished ecological and mutation-order speciation as distinct evolutionary processes. Using a research framework that considers ‘speciation phenotypes’ (sensu Shaw and Mullen in Genet 139(5):649–661, 2011) and a modified hierarchy of speciation models, we address whether speciation in benthic fishes commonly called darters proceeds under divergent ecological selection or a mutation-order process. We examined neutral genetic divergence, sexual signal (male color) divergence, environmental differences, and geographic distance in 66 species pair comparisons. Modified Mantel tests detected significant relationships between genetic distance and overall male color differences, as well as geographic distance and overall male color differences; however, after accounting for the correlation of male color and geographic distance with genetic distance using a partial Mantel test, no relationship was observed between male color and geographic distance. Neither microhabitat nor climatic measures of environmental differences correlated with overall male color differences. Color difference scores for discrete color categories (i.e., red/orange/yellow, black, and blue/green) differed in their correlations with explanatory variables, implying different selection regimes may be influencing each component of darter color patterns. Our results do not support a primary role for divergent ecological selection shaping early divergence of darter sexual signals. Instead, a model of mutation-order speciation may best explain the clock-like manner of changes in male color among darter species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamson, S., & Wissing, T. (1977). Food habits and feeding periodicity of the rainbow, fantail, and banded darters in Four Mile Creek. The Ohio Journal of Science, 77(4), 164–169.

    Google Scholar 

  • Alford, J., & Beckett, D. (2007). Selective predation by four darter (Percidae) species on larval chironomids (Diptera) from a Mississippi stream. Environmental Biology of Fishes, 78(4), 353–364.

    Article  Google Scholar 

  • Armbruster, J. W., & Page, L. M. (1996). Convergence of a cryptic saddle pattern in benthic freshwater fishes. Environmental Biology of Fishes, 45, 249–257.

    Article  Google Scholar 

  • Avise, J. (1994). Molecular markers, natural history and evolution. New York, NY: Chapman and Hall.

    Book  Google Scholar 

  • Boughman, J. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411(6840), 944–948.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, P., Pasch, B., et al. (2010). Geographic variation in the songs of neotropical singing mice, testing the relative importance of drift and local adaptation. Evolution, 64(7), 1955–1972.

    PubMed  Google Scholar 

  • Carlson, R., & Wainwright, P. (2010). The ecological morphology of darter fishes (Percidae: Etheostomatinae). Biological Journal of the Linnean Society, 100(1), 30–45.

    Article  Google Scholar 

  • Clotfelter, E. D., Ardia, D. R., & McGraw, K. J. (2007). Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behavioral Ecology, 18, 1139–1145.

    Article  Google Scholar 

  • Cocroft, R., Rodriguez, R., et al. (2010). Host shifts and signal divergence, mating signals covary with host use in a complex of specialized plant-feeding insects. Biological Journal of the Linnean Society, 99(1), 60–72.

    Article  Google Scholar 

  • Coyne, J., & Orr, H. (2004). Speciation. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Cummings, M. (2007). Sensory trade-offs predict signal divergence in surfperch. Evolution, 61(3), 530–545.

    Article  PubMed  Google Scholar 

  • Dalton, B., Cronin, T., et al. (2010). The fish eye view, are cichlids conspicuous? Journal of Experimental Biology, 213(13), 2243–2255.

    Article  PubMed  Google Scholar 

  • De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: Conceptual unification and terminological recommendations. In D. Howard & S. Berlocher (Eds.), Endless forms: Species and speciation (pp. 57–75). Oxford, UK: Oxford University Press.

    Google Scholar 

  • DeNicola, M., Hoagland, K., et al. (1992). Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society, 11(4), 391–404.

    Article  Google Scholar 

  • Endler, J. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S125–S153.

    Article  Google Scholar 

  • Etnier, D., & Bailey, R. (1989). Etheostoma (Ulocentra) flavum, a new darter from the Tennessee and Cumberland river drainages. Occasional Papers of the Museum of Zoology the University of Michigan, 717, 1–24.

  • Etnier, D., & Starnes, W. (2001). The fishes of Tennessee. Knoxville, TN: The University of Tennessee Press.

    Google Scholar 

  • Fleishman, L., Leal, M., et al. (2009). Habitat light and dewlap color diversity in four species of Puerto Rican Anoline lizards. Journal of Comparative Physiology A, 195(11), 1043–1060.

    Article  Google Scholar 

  • Fuller, R. (2002). Lighting environment predicts the relative abundance of male colour morphs in bluefin killifish (Lucania goodei) populations. Proceedings of the Royal Society B: Biological Sciences, 269(1499), 1457–1465.

    Article  PubMed  Google Scholar 

  • Greenberg, L. (1991). Habitat use and feeding behavior of thirteen species of benthic stream fishes. Environmental Biology of Fishes, 31, 389–401.

    Article  Google Scholar 

  • Grether, G. F., Kasahara, S., Kolluru, G. R., & Cooper, E. L. (2004). Sex–specific effects of carotenoid intake on the immunological response to allografts in guppies (Poecilia reticulata). Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Gumm, J., & Mendelson, T. (2011). The evolution of multi-component visual signals in darters (genus Etheostoma). Current Zoology, 57(2), 125–139.

    Google Scholar 

  • Gumm, J., Feller, K., et al. (2011). Spectral characteristics of male nuptial coloration in darters (Etheostoma). Copeia, 2011(2), 319–326.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D., et al. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.

    Google Scholar 

  • Harmon, L., & Glor, R. (2010). Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution, 64, 2173–2178.

    PubMed  Google Scholar 

  • Harrison, R. G. (1998). Linking evolutionary pattern and process: The relevance of species concepts for the study of speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 19–31). New York: Oxford University Press.

    Google Scholar 

  • Hlohowskyj, I., & White, A. (1983). Food resource partitioning and selectivity by the greenside, rainbow, and fantail darters (Pisces: Percidae). The Ohio Journal of Science, 83(4), 201–208.

    Google Scholar 

  • Irwin, D. (2000). Song variation in an avian ring species. Evolution, 54(3), 998–1010.

    PubMed  CAS  Google Scholar 

  • Jawor, J. M., & Breitwisch, R. (2003). Melanin ornaments, honesty, and sexual selection. The Auk, 120, 249–265.

    Article  Google Scholar 

  • Julian, J., Doyle, M., et al. (2008). Empirical modeling of light availability in rivers. Journal of Geophysical Research, 113(G3), G03022.

    Article  Google Scholar 

  • Kirkpatrick, M., & Ravigne, V. (2002). Speciation by natural and sexual selection: Models and experiments. American Naturalist, 159, S22–S35.

    Article  PubMed  Google Scholar 

  • Lin, S. M., Nieves-Puigdoller, K., Brown, A. C., McGraw, K. J., & Clotfelter, E. D. (2010). Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus. Physiological and Biochemical Zoology, 83, 333–342.

    PubMed  CAS  Google Scholar 

  • Maddison, W. P., & Maddison. D. R. (2010). Mesquite: A modular system for evolutionary analysis. http://mesquiteproject.org.

  • Mani, G., & Clarke, B. (1990). Mutational order, a major stochastic process in evolution. Proceedings of the Royal Society B: Biological Sciences, 240(1297), 29–37.

    Article  CAS  Google Scholar 

  • Marie Curie Speciation Network. (2011). What do we need to know about speciation? Trends in Ecology & Evolution, (in press).

  • Martin, F. (1984). Diets of four sympatric species of Etheostoma (Pisces, Percidae) from southern Indiana, interspecific and intraspecific multiple comparisons. Environmental Biology of Fishes, 11(2), 113–120.

    Article  Google Scholar 

  • Matthews, W., Bek, J., et al. (1982). Comparative ecology of the darters Etheostoma podostemone, E. flabellare and Percina roanoka in the upper Roanoke River drainage, Virginia. Copeia, 1982(4), 805–814.

    Article  Google Scholar 

  • McCormick, F., & Aspinwall, N. (1983). Habitat selection in three species of darters. Environmental Biology of Fishes, 8(3), 279–282.

    Article  Google Scholar 

  • McNett, G., & Cocroft, R. (2008). Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behavioral Ecology, 19(3), 650–656.

    Article  Google Scholar 

  • Mendelson, T., & Shaw, K. (2005). Use of AFLP markers in surveys of arthropod diversity. Molecular Evolution, Producing the Biochemical Data, Part B (Vol. 395, pp. 161–177). San Diego, Elsevier Academic Press Inc.

  • Mendelson, T., & Simons, J. (2006). AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters (Percidae: Etheostoma, Catonotus). Molecular Phylogenetics and Evolution, 41(2), 445–453.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, T., & Wong, M. (2010). AFLP phylogeny of the snubnose darters and allies (Percidae: Etheostoma) provides resolution across multiple levels of divergence. Molecular Phylogenetics and Evolution, 57(3), 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  • Montgomerie, R. (2006). Analyzing colors. In G. Hill & K. McGraw (Eds.), Bird coloration, function and evolution (p. 2). Cambridge: Harvard University Press.

    Google Scholar 

  • Moore, W. (1995). Inferring phylogenies from mtDNA variation, mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49(4), 718–726.

    Article  Google Scholar 

  • Near, T., & Keck, B. (2005). Dispersal, vicariance, and timing of diversification in Nothonotus darters. Molecular Ecology, 14(11), 3485–3496.

    Article  PubMed  CAS  Google Scholar 

  • Near, T., Bossu, C., et al. (2011). Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae). Systematic Biology, 60(5), 565–595.

    Article  PubMed  Google Scholar 

  • Nosil, P., & Flaxman, S. (2011). Conditions for mutation-order speciation. Proceedings of the Royal Society B: Biological Sciences, 278(1704), 399–407.

    Article  PubMed  Google Scholar 

  • Olson, V. A., & Owens, I. P. F. (1998). Costly sexual signals: Are carotenoids rare, risky or required? Trends in Ecology & Evolution, 13, 510–514.

    Article  CAS  Google Scholar 

  • Page, L., & Burr, B. (2011). Peterson field guide to freshwater fishes. New York, NY: Houghton Mifflin.

    Google Scholar 

  • Panhuis, T., Butlin, R., et al. (2001). Sexual selection and speciation. Trends in Ecology & Evolution, 16(7), 364–371.

    Article  Google Scholar 

  • Porter, B., Cavender, T., et al. (2002). Molecular phylogeny of the snubnose darters, subgenus Ulocentra (Genus Etheostoma: family Percidae). Molecular Phylogenetics and Evolution, 22(3), 364–374.

    Article  PubMed  CAS  Google Scholar 

  • Price, T. (2008). Speciation in Birds. Greenwood Village, CO, Roberts & Company Publishers.

  • Ritchie, M. (2007). Sexual selection and speciation. Annual Review of Ecology Evolution and Systematics, 38, 79–102.

    Article  Google Scholar 

  • Ruegg, K., Slabbekoorn, H., et al. (2006). Divergence in mating signals correlates with ecological variation in the migratory songbird, Swainson’s thrush (Catharus ustulatus). Molecular Ecology, 15(11), 3147–3156.

    Article  PubMed  CAS  Google Scholar 

  • Rundell, R., & Price, T. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24(7), 394–399.

    Article  Google Scholar 

  • Rundle, H., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352.

    Article  Google Scholar 

  • Ryan, M. J. (1990a). Sexual selection, sensory systems and sensory exploitation. In D. J. Futuyma & J. Antonovics (Eds.), Oxford Surveys in evolutionary biology (Vol. 7, pp. 157–195). Oxford: Oxford University Press.

    Google Scholar 

  • Ryan, M. J. (1990b). Signals, species, and sexual selection. American Scientist, 78, 46–52.

    Google Scholar 

  • Ryan, M., Fox, J., et al. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343(6253), 66–67.

    Article  PubMed  CAS  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16(7), 372–380.

    Article  Google Scholar 

  • Schluter, D. (2009). Evidence for Ecological Speciation and Its Alternative. Science, 323, 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Schluter, D., & Rambaut, A. (1996). Ecological speciation in postglacial fishes. Proceedings of the Royal Society B: Biological Sciences, 351(1341), 807–814.

    Article  Google Scholar 

  • Seehausen, O., Terai, Y., et al. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), U620–U623.

    Article  Google Scholar 

  • Shaw, K., & Mullen, S. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649–661.

    Article  PubMed  Google Scholar 

  • Smith, T., Mendelson, T., et al. (2011). AFLPs support deep relationships among darters (Percidae: Etheostomatinae) consistent with morphological hypotheses. Heredity, 107(6), 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, J., Chen, G., et al. (2010). The biology of speciation. Evolution, 64(2), 295–315.

    Article  PubMed  Google Scholar 

  • Stelkens, R., & Seehausen, O. (2009). Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. Journal of Evolutionary Biology, 22(8), 1679–1694.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. (2004). PAUP*, Phylogenetic Analysis Using Parsimony (and Other Methods).. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • R Core Development Team (2011) A language and environment for statistical computing. http://www.r-project.org.

  • Tobias, J., Aben, J., et al. (2010). Song divergence by sensory drive in Amazonian birds. Evolution, 64(10), 2820–2839.

    PubMed  Google Scholar 

  • Turelli, M., Barton, N., et al. (2001). Theory and speciation. Trends in Ecology & Evolution, 16(7), 330–343.

    Article  Google Scholar 

  • van Snik Gray, E., Boltz, J., et al. (1997). Food resource partitioning by nine sympatric darter species. Transactions of the American Fisheries Society, 126(5), 822–840.

    Article  Google Scholar 

  • Via, S. (2001). Sympatric speciation in animals, the ugly duckling grows up. Trends in Ecology & Evolution, 16(7), 381–390.

    Article  Google Scholar 

  • Vos, P., Hogers, R., et al. (1995). AFLP, a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, S., & Perry, S. (1998). Habitat partitioning in a community of darters in the Elk River, West Virginia. Environmental Biology of Fishes, 51(4), 411–419.

    Article  Google Scholar 

  • Williams, T., & Mendelson, T. (2010). Behavioral isolation based on visual signals in a sympatric pair of darter species. Ethology, 116(11), 1038–1049.

    Article  Google Scholar 

  • Williams, T., & Mendelson, T. (2011). Female preference for male coloration may explain behavioural isolation in sympatric darters. Animal Behaviour, 82(4), 683–689.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Near for contributing specimen data as well as J. Gumm, G. Martin, T. Smith, and T. Williams for help with specimen and data collection. We thank M. Schorr for providing data collection equipment and two anonymous reviewers for providing insightful comments on the manuscript. This work was funded by National Science Foundation grant IOS-0919271 to T.C.M. and by student grants from the Animal Behavior Society, Sigma Xi, and the Society for Integrative and Comparative Biology to M.D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael David Martin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.D., Mendelson, T.C. Signal Divergence is Correlated with Genetic Distance and not Environmental Differences in Darters (Percidae: Etheostoma). Evol Biol 39, 231–241 (2012). https://doi.org/10.1007/s11692-012-9179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9179-2

Keywords

Navigation