Skip to main content
Log in

Advances in Animal Flight Aerodynamics Through Flow Measurement

  • Focal Reviews
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23, 261–304.

    Article  Google Scholar 

  • Altshuler, D. L., & Dudley, R. (2003). Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. Journal of Experimental Biology, 206(18), 3139.

    Article  PubMed  Google Scholar 

  • Altshuler, D. L., Princevac, M., Pan, H. S., & Lozano, J. (2009). Wake patterns of the wings and tail of hovering hummingbirds. Experiments in Fluids, 46(5), 835–846.

    Article  Google Scholar 

  • Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063–1072.

    Article  PubMed  Google Scholar 

  • Bomphrey, R. J. (2006). Insects in flight: direct visualization and flow measurements. Bioinspiration & Biomimetics, 1(4), S1–S9.

    Article  CAS  Google Scholar 

  • Bomphrey, R. J., Henningsson, P., Michaelis, D., & Hollis, D. (2011). Desert locust aerodynamics: instantaneous wake volumes captured using tomographic particle image velocimetry. Society for Experimental Biology Annual Main Meeting, Glasgow, UK.

  • Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K., & Thomas, A. L. R. (2005). The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology, 208(6), 1079–1094.

    Article  PubMed  Google Scholar 

  • Bomphrey, R. J., Lawson, N. J., Taylor, G. K., & Thomas, A. L. R. (2006a). Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Experiments in Fluids, 40(4), 546–554.

    Article  Google Scholar 

  • Bomphrey, R. J., Taylor, G. K., Lawson, N. J., & Thomas, A. L. R. (2006b). Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. Journal of The Royal Society Interface, 3(7), 311–317.

    Article  Google Scholar 

  • Dabiri, J. O. (2005). On the estimation of swimming and flying forces from wake measurements. Journal of Experimental Biology, 208(18), 3519–3532.

    Article  PubMed  Google Scholar 

  • Dial, K. P. (2000). On the origin and ontogeny of bird flight: developing wings assist vertical running. American Zoologist, 40(6), 998.

    Google Scholar 

  • Dial, K. P., Biewener, A. A., Tobalske, B. W., & Warrick, D. R. (1997). Mechanical power output of bird flight. Nature, 390(6655), 67–70.

    Article  CAS  Google Scholar 

  • Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393–2412.

    PubMed  Google Scholar 

  • Ellington, C. P., van den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626–630.

    Article  CAS  Google Scholar 

  • Ferry-Graham, L. A., Wainwright, P. C., & Lauder, G. V. (2003). Quantification of flow during suction feeding in bluegill sunfish. Zoology, 106(2), 159–168.

    Article  PubMed  Google Scholar 

  • Flammang, B. E., Lauder, G. V., Troolin, D. R., Strand, T. E. (2011). Volumetric imaging of fish locomotion. Biology Letters.

  • Garner, J. P., Taylor, G. K., & Thomas, A. L. R. (1999). On the origins of birds: the sequence of character acquisition in the evolution of avian flight. Proceedings of the Royal Society of London Series B-Biological Sciences, 266(1425), 1259–1266.

    Article  Google Scholar 

  • Hedenström, A., Johansson, L. C., & Spedding, G. (2009a). Bird or bat: comparing airframe design and flight performance. Bioinspiration & Biomimetics, 4(1), 015001.

    Article  Google Scholar 

  • Hedenström, A., Johansson, L. C., Wolf, M., von Busse, R., Winter, Y., & Spedding, G. R. (2007). Bat flight generates complex aerodynamic tracks. Science, 316(5826), 894–897.

    Article  PubMed  Google Scholar 

  • Hedenström, A., Muijres, F., von Busse, R., Johansson, L., Winter, Y., Spedding, G. (2009). High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel. Experiments in Fluids.

  • Hedenström, A., Rosen, M., & Spedding, G. R. (2006a). Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. Journal of The Royal Society Interface, 3(7), 263–276.

    Article  Google Scholar 

  • Hedenström, A., Van Griethuijsen, L., Rosen, M., & Spedding, G. R. (2006b). Vortex wakes of birds: recent developments using digital particle image velocimetry in a wind tunnel. Animal Biology, 56(4), 535–549.

    Article  Google Scholar 

  • Heers, A. M., Tobalske, B. W., & Dial, K. P. (2011). Ontogeny of lift and drag production in ground birds. Journal of Experimental Biology, 214(5), 717–725.

    Article  PubMed  Google Scholar 

  • Henningsson, P., & Bomphrey, R. J. (2011). A view of dragonfly and damselfly aerodynamics through high-speed stereo PIV. Integrative and Comparative Biology, 51, E56.

    Google Scholar 

  • Henningsson, P., Muijres, F. T., & Hedenström, A. (2011a). Time-resolved vortex wake of a common swift flying over a range of flight speeds. Journal of The Royal Society Interface, 8(59), 807–816.

    Article  CAS  Google Scholar 

  • Henningsson, P., Spedding, G. R., & Hedenström, A. (2011b). Vortex wake, flight kinematics of a swift in cruising flight in a wind tunnel (vol 211, pg 717, 2008). Journal of Experimental Biology, 214(4), 697.

    Article  Google Scholar 

  • Huang, H., et al. (1997). On errors of digital particle image velocimetry. Measurement Science and Technology, 8(12), 1427.

    Article  CAS  Google Scholar 

  • Hubel, T., Hristov, N., Swartz, S., Breuer, K. (2009). Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids.

  • Hubel, T. Y., Hristov, N. I., Swartz, S. M., & Breuer, K. S. (2009b). Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids, 46(5), 933–943.

    Article  Google Scholar 

  • Hubel, T. Y., Riskin, D. K., Swartz, S. M., & Breuer, K. S. (2010). Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. Journal of Experimental Biology, 213(20), 3427–3440.

    Article  PubMed  Google Scholar 

  • Hubel, T. Y., & Tropea, C. (2010). The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds. Journal of Experimental Biology, 213(11), 1930–1939.

    Article  PubMed  Google Scholar 

  • Johansson, L. C., & Hedenström, A. (2009). The vortex wake of blackcaps (Sylvia atricapilla L) measured using high-speed digital particle image velocimetry (DPIV). Journal of Experimental Biology, 212(20), 3365–3376.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, L. C., Wolf, M., & Hedenström, A. (2010). A quantitative comparison of bird and bat wakes. Journal of The Royal Society Interface, 7(42), 61–66.

    Article  Google Scholar 

  • Johansson, L. C., Wolf, M., von Busse, R., Winter, Y., Spedding, G. R., & Hedenström, A. (2008). The near and far wake of Pallas’ long tongued bat (Glossophaga soricina). Journal of Experimental Biology, 211(18), 2909–2918.

    Article  PubMed  Google Scholar 

  • Kelvin, L. (1887). On ship waves. Proceedings the Institution of Mechanical Engineers, 38, 409–434.

    Article  Google Scholar 

  • Kunz, T. H., & Jones, D. P. (2000). Pteropus vampyrus. Mammalian Species, 642, 1–6.

    Article  Google Scholar 

  • Lack, D. (1956). Swifts in a tower. London: Methuen.

    Google Scholar 

  • Lehmann, F. O. (2004). Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. Arthropod Structure & Development, 33(3), 331–345.

    Article  Google Scholar 

  • Lehmann, F. O. (2008). When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. Journal of Experimental Biology, 211(2), 224–233.

    Article  PubMed  Google Scholar 

  • Lewin, R. (1983). How did vertebrates take to the air?

  • Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003). Fish exploiting vortices decrease muscle activity. Science, 302(5650), 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  • Muijres, F. T., Bowlin, M. S., Johansson, L. C., Hedenström, A. (2011). Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers. Journal of The Royal Society Interface.

  • Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250–1253.

    Article  PubMed  CAS  Google Scholar 

  • Muijres, F. T., Johansson, L. C., Winter, Y., Hedenström, A. (2011). Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. Journal of The Royal Society Interface.

  • Olberg, R. M., Worthington, A. H., & Venator, K. R. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A, 186, 155–162.

    Article  CAS  Google Scholar 

  • Pennycuick, C. J. (1968). Power requirements for horizontal flight in the pigeon Columba livia. Journal of Experimental Biology, 49, 527–555.

    Google Scholar 

  • Rosen, M., Spedding, G. R., & Hedenström, A. (2007). Wake structure and wingbeat kinematics of a house-martin Delichon urbica. Journal of The Royal Society Interface, 4(15), 659–668.

    Article  CAS  Google Scholar 

  • Spedding, G. R. (1987). The wake of a kestrel (Falco tinnunculus) in flapping flight. Journal of Experimental Biology, 127, 59–78.

    Google Scholar 

  • Spedding, G. R. (2003). Comparing fluid mechanics models with experimental data. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358(1437), 1567–1576.

    Article  CAS  Google Scholar 

  • Spedding, G. R., & Hedenström, A. (2009). PIV-based investigations of animal flight. Experiments in Fluids, 46(5), 749–763.

    Article  Google Scholar 

  • Spedding, G. R., Hedenström, A., & Rosen, M. (2003a). Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel. Experiments in Fluids, 34(2), 291–303.

    Article  Google Scholar 

  • Spedding, G. R., Rayner, J. M. V., & Pennycuick, C. J. (1984). Momentum and energy in the wake of a pigeon (Columba-Livia) in slow flight. Journal of Experimental Biology, 111, 81–102.

    Google Scholar 

  • Spedding, G. R., Rosen, M., & Hedenström, A. (2003b). A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. Journal of Experimental Biology, 206(14), 2313–2344.

    Article  PubMed  CAS  Google Scholar 

  • Stamhuis, E. J., & Videler, J. J. (1995). Quantitative flow analysis around aquatic animals using laser sheet Particle Image Velocimetry. Journal of Experimental Biology, 198(2), 283–294.

    PubMed  Google Scholar 

  • Stanislas, M., Okamoto, K., Kaehler, C. J., Westerweel, J., & Scarano, F. (2008). Main results of the third international PIV Challenge. Experiments in Fluids, 45(1), 27–71.

    Article  Google Scholar 

  • Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207(24), 4299–4323.

    Article  PubMed  Google Scholar 

  • Tian, X. D., Iriarte-Diaz, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., et al. (2006). Direct measurements of the kinematics and dynamics of bat flight. Bioinspiration & Biomimetics, 1(4), S10–S18.

    Article  Google Scholar 

  • Tobalske, B. W., & Dial, K. P. (2007). Aerodynamics of wing-assisted incline running in birds. Journal of Experimental Biology, 210(10), 1742–1751.

    Article  PubMed  Google Scholar 

  • Usherwood, J. R., & Ellington, C. P. (2002). The aerodynamics of revolving wings—I. Model hawkmoth wings. Journal of Experimental Biology, 205(11), 1547–1564.

    PubMed  Google Scholar 

  • Vandenberghe, N., Zhang, J., & Childress, S. (2004). Symmetry breaking leads to forward flapping flight. Journal of Fluid Mechanics, 506, 147–155.

    Article  Google Scholar 

  • Videler, J. J., Stamhuis, E. J., & Povel, G. D. E. (2004). Leading-edge vortex lifts swifts. Science, 306(5703), 1960–1962.

    Article  PubMed  CAS  Google Scholar 

  • Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2005). Aerodynamics of the hovering hummingbird. Nature, 435(7045), 1094–1097.

    Article  PubMed  CAS  Google Scholar 

  • Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2009). Lift production in the hovering hummingbird. Proceedings of the Royal Society B-Biological Sciences, 276(1674), 3747–3752.

    Article  Google Scholar 

  • Windsor, S. P., Norris, S. E., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus) Part I: open water and heading towards a wall. Journal of Experimental Biology, 213(22), 3819–3831.

    Article  PubMed  Google Scholar 

  • Winston, M. L. (1987). The biology of the honey bee (p. XI+281). Cambridge, Massachusetts, USA; London, England, UK: Harvard University Press.

    Google Scholar 

  • Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549–1552.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr Per Henningsson for capturing the images in Fig. 1, Prof Adrian Thomas for useful discussions on the subject, and two reviewers for their constructive contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bomphrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomphrey, R.J. Advances in Animal Flight Aerodynamics Through Flow Measurement. Evol Biol 39, 1–11 (2012). https://doi.org/10.1007/s11692-011-9134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9134-7

Keywords

Navigation