Skip to main content
Log in

The neural basis of attaining conscious awareness of sad mood

Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The neural processes associated with becoming aware of sad mood are not fully understood. We examined the dynamic process of becoming aware of sad mood and recovery from sad mood. Sixteen healthy subjects underwent fMRI while participating in a sadness induction task designed to allow for variable mood induction times. Individualized regressors linearly modeled the time periods during the attainment of self-reported sad and baseline “neutral” mood states, and the validity of the linearity assumption was further tested using independent component analysis. During sadness induction the dorsomedial and ventrolateral prefrontal cortices, and anterior insula exhibited a linear increase in the blood oxygen level-dependent (BOLD) signal until subjects became aware of a sad mood and then a subsequent linear decrease as subjects transitioned from sadness back to the non-sadness baseline condition. These findings extend understanding of the neural basis of conscious emotional experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277.

    Article  CAS  PubMed  Google Scholar 

  • Baars, B. (1988). A cognitive theory of consciousness. New York: Cambridge University Press.

    Google Scholar 

  • Baars, B. (1997a). In the theatre of consciousness. Global Workspace Theory, a rigorous scientific theory of consciousness. Journal of Consciousness Studies, 4(4), 292–309.

    Google Scholar 

  • Baars, B. (1997b). In the theater of consciousness. New York: Oxford University Press.

    Book  Google Scholar 

  • Baars, B. (2002). The conscious access hypothesis: origins and recent evidence. Trends in Cognitive Sciences, 6, 47–52.

    Article  PubMed  Google Scholar 

  • Baars, B. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.

    Article  PubMed  Google Scholar 

  • Baars, B., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Sciences, 7(4), 166–172.

    Article  PubMed  Google Scholar 

  • Baars, B., Ramsøy, T., & Laureys, S. (2003). Brain, conscious experience and the observing self. Trends in Neurosciences, 26, 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Baddeley, A. (2007). Working memory, thought, and action. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Barbas, H., & Pandya, D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 286(3), 353–375. doi:10.1002/cne.902860306.

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner, T., Lutz, K., Schmidt, C. F., & Jancke, L. (2006). The emotional power of music: how music enhances the feeling of affective pictures. Brain Research, 1075(1), 151–164. doi:10.1016/j.brainres.2005.12.065.

    Article  CAS  PubMed  Google Scholar 

  • Bechara, A., Damasio, H., Tranel, D., & Damasio, A. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293–1295.

    Article  CAS  PubMed  Google Scholar 

  • Bruneau, E. G., Pluta, A., & Saxe, R. (2012). Distinct roles of the “Shared Pain” and “Theory of Mind” networks in processing others’ emotional suffering. Neuropsychologia, 50(2), 219–231. doi:10.1016/j.neuropsychologia.2011.11.008.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. doi:10.1002/hbm.1048.

    Article  CAS  PubMed  Google Scholar 

  • Carruthers, P. (2013). On central cognition. Philosophical Studies.

  • Colibazzi, T., Posner, J., Wang, Z., Gorman, D., Gerber, A., Yu, S., Zhu, H., Kangarlu, A., Duan, Y., Russell, J. A., & Peterson, B. S. (2010). Neural systems subserving valence and arousal during the experience of induced emotions. Emotion, 10(3), 377–389. doi:10.1037/a0018484.

    Article  PubMed  Google Scholar 

  • Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655–666.

    Article  CAS  PubMed  Google Scholar 

  • Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Damasio, A., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L., Parvizi, J., & Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3(10), 1049–1056. doi:10.1038/79871.

    Article  CAS  PubMed  Google Scholar 

  • Dehaene, S. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100, 8520–8525.

    Article  CAS  Google Scholar 

  • Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 79, 1–37.

    Article  CAS  PubMed  Google Scholar 

  • Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11(1), 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Etkin, A., Klemenhagen, K., & Dudman, J. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44(6), 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition. New York: Biometrics Research, New York State Psychiatric Institute.

    Google Scholar 

  • Fletcher, P., & Henson, R. (2001). Frontal lobes and human memory insights from functional neuroimaging. Brain, 124(5), 849–881.

    Article  CAS  PubMed  Google Scholar 

  • George, M. S., Ketter, T. A., Parekh, P. I., Horwitz, B., Herscovitch, P., & Post, R. M. (1995). Brain activity during transient sadness and happiness in healthy women. American Journal of Psychiatry, 152(3), 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Goldin, P. R., Hutcherson, C. A., Ochsner, K. N., Glover, G. H., Gabrieli, J. D., & Gross, J. (2005). The neural bases of amusement and sadness: a comparison of block contrast and subject-specific emotion intensity regression approaches. NeuroImage, 27(1), 26–36. doi:10.1016/j.neuroimage.2005.03.018.

    Article  PubMed  Google Scholar 

  • Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586. doi:10.1016/j.biopsych.2007.05.031.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grimm, S., Schmidt, C. F., Bermpohl, F., Heinzel, A., Dahlem, Y., Wyss, M., Hell, D., Boesiger, P., Boeker, H., & Northoff, G. (2006). Segregated neural representation of distinct emotion dimensions in the prefrontal cortex-an fMRI study. NeuroImage, 30(1), 325–340.

    Article  PubMed  Google Scholar 

  • Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: a dual-process framework. Cognition and Emotion, 25(3), 400–412. doi:10.1080/02699931.2010.544160.

    Article  PubMed Central  PubMed  Google Scholar 

  • Habel, U., Klein, M., Kellermann, T., Shah, N. J., & Schneider, F. (2005). Same or different? Neural correlates of happy and sad mood in healthy males. NeuroImage, 26(1), 206–214. doi:10.1016/j.neuroimage.2005.01.014.

    Article  PubMed  Google Scholar 

  • Harrison, B. J., Pujol, J., Ortiz, H., Fornito, A., Pantelis, C., & Yücel, M. (2008). Modulation of brain resting-state networks by sad mood induction. PLoS ONE, 3(3), e1794. doi:10.1371/journal.pone.0001794.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences, 33(2–3), 61–83. doi:10.1017/S0140525X0999152X. discussion 83–135.

    Article  PubMed  Google Scholar 

  • Holtzheimer, P. E., & Mayberg, H. (2011). Stuck in a rut: rethinking depression and its treatment. Trends in Neurosciences, 34(1), 1–9. doi:10.1016/j.tins.2010.10.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kober, H., Barrett, L., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage, 42(2), 998–1031.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355. doi:10.1016/j.neuroimage.2013.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Kouider, S., Dehaene, S., Jobert, A., & Bihan, D. L. (2007). Cerebral bases of subliminal and supraliminal priming during reading. Cerebral Cortex, 17(9), 2019–2029.

    Article  PubMed  Google Scholar 

  • Krawitz, A., Fukunaga, R., & Brown, J. W. (2010). Anterior insula activity predicts the influence of positively framed messages on decision making. Cognitive, Affective, & Behavioral Neuroscience, 10(3), 392–405. doi:10.3758/CABN.10.3.392.

    Article  Google Scholar 

  • Kreiman, G., Fried, I., & Koch, C. (2003). Single neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences, 99, 8378–8383.

    Article  Google Scholar 

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., Kochunov, P. V., Nickerson, D., Mikiten, S. A., & Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120–131.

    Article  CAS  PubMed  Google Scholar 

  • Lane, R. (2000). Neural correlates of emotional experience. In R. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion. New York: Oxford University Press.

    Google Scholar 

  • Lane, R. (2008). Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosomatic Medicine, 70(2), 214–231.

    Article  PubMed  Google Scholar 

  • Lane, R., Fink, G., Chua, P., & Dolan, R. (1997). Neural activation during selective attention to subjective emotional responses. Neuroreport, 8(18), 3969–3972.

    Article  CAS  PubMed  Google Scholar 

  • Lane, R., Weidenbacher, H., Smith, R., Fort, C., Thayer, J. F., & Allen, J. J. B. (2013). Subgenual anterior cingulate cortex activity covariation with cardiac vagal control is altered in depression. Journal of Affective Disorders, 150(2), 565–570. doi:10.1016/j.jad.2013.02.005.

    Article  PubMed  Google Scholar 

  • Lee, K. H., & Siegle, G. J. (2009). Common and distinct brain networks underlying explicit emotional evaluation: a meta-analytic study. Social Cognitive and Affective Neuroscience, 7, 521–534. doi:10.1093/scan/nsp001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Linden, D. (2007). The working memory networks of the human brain. The Neuroscientist, 13(3), 257–267.

    Article  PubMed  Google Scholar 

  • Liotti, M., Mayberg, H., McGinnis, S., Brannan, S. L., & Jerabek, P. (2002). Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. American Journal of Psychiatry, 159(11), 1830–1840.

    Article  PubMed  Google Scholar 

  • Mayberg, H., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L., & Fox, P. T. (1999). Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. The American Journal of Psychiatry, 156(5), 675–682.

    CAS  PubMed  Google Scholar 

  • McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D., & Gross, J. J. (2008). Gender differences in emotion regulation: an fMRI study of cognitive reappraisal. Group Processes & Intergroup Relations, 11(2), 143–162. doi:10.1177/1368430207088035.

    Article  Google Scholar 

  • Medford, N., & Critchley, H. D. (2010). Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Structure & Function, 214(5–6), 535–549. doi:10.1007/s00429-010-0265-x.

    Article  Google Scholar 

  • Mikels, J., Reuter-Lorenz, P., Beyer, J., & Fredrickson, B. (2008). Emotion and working memory: evidence for domain-specific processes for affective maintenance. Emotion, 8(2), 256–266.

    Article  PubMed  Google Scholar 

  • Mitchell, R. (2007). fMRI delineation of working memory for emotional prosody in the brain: commonalities with the lexico-semantic emotion network. NeuroImage, 36(3), 1015–1025.

    Article  PubMed  Google Scholar 

  • Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150–1162. doi:10.1002/hbm.20337.

    Article  PubMed  Google Scholar 

  • Morris, J., Öhman, A., & Dolan, R. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Newman, J., & Baars, B. (1993). A neural attentional model for access to consciousness: a global workspace perspective. Concepts in Neuroscience, 4(2), 255–290.

    Google Scholar 

  • Northoff, G., Richter, A., Gessner, M., Schlagenhauf, F., Fell, J., Baumgart, F., Kaulisch, T., Kötter, R., Stephan, K. E., Leschinger, A., Hagner, T., Bargel, B., Witzel, T., Hinrichs, H., Bogerts, B., Scheich, H., & Heinze, H. J. (2000). Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cerebral Cortex, 10(1), 93–107.

    Article  CAS  PubMed  Google Scholar 

  • Ochsner, K., & Gross, J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.

    Article  PubMed  Google Scholar 

  • Ochsner, K., Bunge, S. A., Gross, J., & Gabrieli, J. D. (2002). Rethinking feelings: an FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14(8), 1215–1229. doi:10.1162/089892902760807212.

    Article  PubMed  Google Scholar 

  • Paradiso, S., Johnson, D. L., Andreasen, N. C., O’Leary, D. S., Watkins, G. L., Ponto, L. L., & Hichwa, R. D. (1999). Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. American Journal of Psychiatry, 156(10), 1618–1629.

    Article  CAS  PubMed  Google Scholar 

  • Pardo, J. V., Pardo, P. J., & Raichle, M. E. (1993). Neural correlates of self-induced dysphoria. American Journal of Psychiatry, 150(5), 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Paulus, M. P., & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure & Function, 214(5–6), 451–463. doi:10.1007/s00429-010-0258-9.

    Article  Google Scholar 

  • Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003a). Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biological Psychiatry, 54(5), 504–514. doi:10.1016/S0006-3223(03)00168-9.

    Article  PubMed  Google Scholar 

  • Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003b). Neurobiology of emotion perception II: implications for major psychiatric disorders. Biological Psychiatry, 54(5), 515–528.

    Article  PubMed  Google Scholar 

  • Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829, 833–857. doi:10.1038/mp.2008.65.

  • Prinz, J. (2006). Gut reactions: A perceptual theory of emotion. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Prinz, J. (2007). Accessed, accessible, and inaccessible: Where to draw the phenomenal line. Behavioral and Brain Sciences, 30(5–6), 521–522. doi:10.1017/S0140525X07003020.

    Google Scholar 

  • Prinz, J. (2012). The conscious brain: How attention engenders experience (philosophy of mind). New York: Oxford University Press.

    Book  Google Scholar 

  • Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11(2), 416–431. doi:10.1214/aos/1176346150.

    Article  Google Scholar 

  • Schall, J., Purcell, B. A., Heitz, R. P., Logan, G. D., & Palmeri, T. J. (2011). Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. The European Journal of Neuroscience, 33(11), 1991–2002. doi:10.1111/j.1460-9568.2011.07715.x.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider, F., Grodd, W., Weiss, U., Klose, U., Mayer, K. R., Nagele, T., & Gur, R. C. (1997). Functional MRI reveals left amygdala activation during emotion. Psychiatry Research, 76(2–3), 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Schnell, K., Bluschke, S., Konradt, B., & Walter, H. (2011). Functional relations of empathy and mentalizing: an fMRI study on the neural basis of cognitive empathy. NeuroImage, 54(2), 1743–1754. doi:10.1016/j.neuroimage.2010.08.024.

    Article  PubMed  Google Scholar 

  • Smith, R., Fadok, R. A., Purcell, M., Liu, S., Stonnington, C., Spetzler, R. F., & Baxter, L. C. (2011). Localizing sadness activation within the subgenual cingulate in individuals: a novel functional MRI paradigm for detecting individual differences in the neural circuitry underlying depression. Brain Imaging and Behavior, 5(3), 229–239. doi:10.1007/s11682-011-9127-2.

    Article  PubMed  Google Scholar 

  • Smith, R., Allen, J., Thayer, J. F., Fort, C., & Lane, R. (2014). Increased association over time between regional frontal lobe BOLD change magnitude and cardiac vagal control with sertraline treatment for major depression. Psychiatry Research: Neuroimaging doi:10.1016/j.pscychresns.2014.08.015

  • Venkatraman, V., Rosati, A., Taren, A., & Huettel, S. (2009). Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. The Journal of Neuroscience, 29(42), 13158–13164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams, L., Liddell, B. J., Kemp, A. H., Bryant, R. A., Meares, R. A., Peduto, A. S., & Gordon, E. (2006). Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Human Brain Mapping, 27(8), 652–661. doi:10.1002/hbm.20208.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Barrow Neurological Foundation.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Conflict of interest

Ryan Smith, B. Blair Braden, Kewei Chen, Francisco A. Ponce, Richard D. Lane, and Leslie C. Baxter have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Smith.

Additional information

Richard D. Lane and Leslie C. Baxter are co-anchor authors on this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure S1

Sample images from the sad, neutral, and attentiveness conditions. (GIF 494 kb)

High resolution image (TIFF 3195 kb)

Supplementary figure S2

ICA Analyses. Independent component time courses from the subjects not shown in Fig. 3, and their fit to the linear regressors used in the primary analysis. Subjects are arranged in order of descending R-squared values (from Table 4). (GIF 853 kb)

High resolution image (TIFF 2700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R., Braden, B.B., Chen, K. et al. The neural basis of attaining conscious awareness of sad mood. Brain Imaging and Behavior 9, 574–587 (2015). https://doi.org/10.1007/s11682-014-9318-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9318-8

Keywords

Navigation