Skip to main content
Log in

The Microstructure Stability of Atmospheric Plasma-Sprayed MnCo2O4 Coating Under Dual-Atmosphere (H2/Air) Exposure

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Based on the specific structure of tubular solid oxide fuel cells, good chemical, microstructural, and phase stabilities for the protective coating are required in both the oxidizing and reducing environments. In this work, MnCo2O4 coatings were deposited onto porous Ni50Cr50-Al2O3 substrate by atmospheric plasma spray. The coated samples were tested at 800 °C with the coating exposed in air environment and the substrate in H2 environment. Reducing and pre-oxidizing treatments were performed prior to the stability test. The microstructural stability, phase composition, and electrical properties of the tested coatings were investigated. The surface morphology exhibited an excellent surface stability, and no obvious crystal coarsening was observed. With enhancement of the testing duration, the area-specific resistance presented a decreasing trend attributed to increase in the contact interface and densification of the upper layer. The cross-section views presented a dense upper layer and a relatively porous bottom layer. The x-ray diffraction results also indicated a single MnCo2O4 phase in the upper layer exposed to air environment and a reduced phase structure in the bottom layer from the substrate side. The evolution mechanism between the oxidation frontier and the reduction interface was then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Ballée, A. Ringuedé, M. Cassir, M. Putkonen, and L. Niinistö, Synthesis of a Thin-Layered Ionic Conductor, CeO2-Y2O3, by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications, Chem. Mater., 2009, 21(19), p 4614-4619

    Article  Google Scholar 

  2. A. Evans, A. Bieberle-Hütter, J.L.M. Rupp, and L.J. Gauckler, Review on Microfabricated Micro-Solid Oxide Fuel Cell Membranes, J. Power Sour., 2009, 194(1), p 119-129

    Article  Google Scholar 

  3. J.W. Fergus, Metallic Interconnects for Solid Oxide Fuel Cells, Mater. Sci. Eng. A, 2005, 397(1-2), p 271-283

    Article  Google Scholar 

  4. J.W. Fergus, Synergism in the Design of Interconnect Alloy-Coating Combinations Solid for Oxide Fuel Cells, Scr. Mater., 2011, 65(2), p 73-77

    Article  Google Scholar 

  5. I. Antepara, I. Villarreal, L.M. Rodríguez-Martínez, N. Lecanda, U. Castro, and A. Laresgoiti, Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs, J. Power Sour., 2005, 151, p 103-107

    Article  Google Scholar 

  6. J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Development of High Strength Ferritic Steel for Interconnect Application in SOFCs, J. Power Sour., 2008, 178(1), p 163-173

    Article  Google Scholar 

  7. P. Gannon, V. Gorokhovsky, M. Deibert, R. Smith, A. Kayani, P. White, S. Sofie, Z. Yang, D. McCready, and S. Visco, Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steels, Int. J. Hydrog. Energy, 2007, 32(16), p 3672-3681

    Article  Google Scholar 

  8. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, and L. Singheiser, Chromium Vaporization from High-Temperature Alloys: I. Chromia-Forming Steels and the Influence of Outer Oxide Layers, J. Electrochem. Soc., 2007, 154(4), p A295-A306

    Article  Google Scholar 

  9. M. Hänsel, W.J. Quadakkers, and D.J. Young, Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure, Oxid. Met., 2003, 59(3-4), p 285-301 (in English)

    Article  Google Scholar 

  10. A. Petric and H. Ling, Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures, J. Am. Ceram. Soc., 2007, 90(5), p 1515-1520

    Article  Google Scholar 

  11. H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R. Smith, E. Suard, and A. Rousset, Structural Variations and Cation Distributions in Mn3−xCoxO4 (0 ≤ x≤3) Dense Ceramics Using Neutron Diffraction Data, Solid State Sci., 2010, 12(3), p 379-386

    Article  Google Scholar 

  12. H. Kurokawa, C. Jacobson, L. Dejonghe, and S. Visco, Chromium Vaporization of Bare and of Coated Iron-Chromium Alloys at 1073 K, Solid State Ion., 2007, 178(3-4), p 287-296

    Article  Google Scholar 

  13. M. Pihlatie, J. Lagerbom, T. Salminen, J. Laakso, L. Hyvärinen, M. Kylmälahti, O. Himanen, J. Kiviaho, and P. Vuoristo, Influence of Powder Composition and Manufacturing Method on Electrical and Chromium Barrier Properties of Atmospheric Plasma Sprayed Spinel Coatings Prepared from MnCo2O4 and Mn2CoO4 + Co Powders on Crofer 22 APU Interconnectors, Int. J. Hydrog. Energy, 2014, 39(30), p 17246-17257

    Article  Google Scholar 

  14. Z. Yang, G. Xia, X. Li, and J. Stevenson (Mn, Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications, Int. J. Hydrog. Energy, 2007, 32(16), p 3648-3654

    Article  Google Scholar 

  15. J.W. Stevenson, Z.G. Yang, G.G. Xia, Z. Nie, and J.D. Templeton, Long-Term Oxidation Behavior of Spinel-Coated Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications, J. Power Sour., 2013, 231, p 256-263

    Article  Google Scholar 

  16. Z. Yang, G.-G. Xia, G.D. Maupin, and J.W. Stevenson, Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications, Surf. Coat. Technol., 2006, 201(7), p 4476-4483

    Article  Google Scholar 

  17. N.V. Gavrilov, V.V. Ivanov, A.S. Kamenetskikh, and A.V. Nikonov, Investigations of Mn-Co-O and Mn-Co-Y-O Coatings Deposited by the Magnetron Sputtering on Ferritic Stainless Steels, Surf. Coat. Technol., 2011, 206(6), p 1252-1258

    Article  Google Scholar 

  18. W. Wei, W. Chen, and D.G. Ivey, Oxidation Resistance and Electrical Properties of Anodically Electrodeposited Mn-Co Oxide Coatings for Solid Oxide Fuel Cell Interconnect Applications, J. Power Sour., 2009, 186(2), p 428-434

    Article  Google Scholar 

  19. H. Zhang, Z. Zhan, and X. Liu, Electrophoretic Deposition of (Mn, Co)3O4 Spinel Coating for Solid Oxide Fuel Cell Interconnects, J. Power Sour., 2011, 196(19), p 8041-8047

    Article  Google Scholar 

  20. J. Wu, Y. Jiang, C. Johnson, and X. Liu, DC Electrodeposition of Mn-Co Alloys on Stainless Steels for SOFC Interconnect Application, J. Power Sour., 2008, 177(2), p 376-385

    Article  Google Scholar 

  21. J. Puranen, J. Laakso, M. Kylmälahti, and P. Vuoristo, Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors, J. Therm. Spray Technol., 2013, 22(5), p 622-630

    Article  Google Scholar 

  22. J. Puranen, J. Lagerbom, L. Hyvärinen, M. Kylmälahti, O. Himanen, M. Pihlatie, J. Kiviaho, and P. Vuoristo, The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors, J. Therm. Spray Technol., 2010, 20(1-2), p 154-159

    Article  Google Scholar 

  23. J. Puranen, J. Lagerbom, L. Hyvärinen, T. Mäntylä, E. Levänen, M. Kylmälahti, and P. Vuoristo, Formation and Structure of Plasma Sprayed Manganese-Cobalt Spinel Coatings on Preheated Metallic Interconnector Plates, Surf. Coat. Technol., 2010, 205(4), p 1029-1033

    Article  Google Scholar 

  24. O. Thomann, M. Pihlatie, M. Rautanen, O. Himanen, J. Lagerbom, M. Mäkinen, T. Varis, T. Suhonen, and J. Kiviaho, Development and Application of HVOF Sprayed Spinel Protective Coating for SOFC Interconnects, J. Therm. Spray Technol., 2013, 22(5), p 631-639

    Article  Google Scholar 

  25. C.-X. Li, L.-L. Yun, Y. Zhang, C.-J. Li, and L.-J. Guo, Microstructure, Performance and Stability of Ni/Al2O3 Cermet-Supported SOFC Operating with Coal-Based Syngas Produced Using Supercritical Water, Int. J. Hydrog. Energy, 2012, 37(17), p 13001-13006

    Article  Google Scholar 

  26. L.J.H. Kuo, S.D. Vora, and S.C. Singhal, Plasma Spraying of Lanthanum Chromite Films for Solid Oxide Fuel Cell Interconnection Application, J. Am. Ceram. Soc., 1997, 80(3), p 589-593

    Article  Google Scholar 

  27. H. Tsukuda, A. Notomi, and N. Histatome, Application of Plasma Spraying to Tubular-Type Solid Oxide Fuel Cells Production, J. Therm. Spray Technol., 2000, 9(3), p 364-368

    Article  Google Scholar 

  28. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  29. C.-J. Li, C.-X. Li, and M. Wang, Effect of Spray Parameters on the Electrical Conductivity of Plasma-Sprayed La1−xSrxMnO3 Coating for the Cathode of SOFCs, Surf. Coat. Technol., 2005, 198(1-3), p 278-282

    Article  Google Scholar 

  30. X.-J. Ning, C.-X. Li, C.-J. Li, and G.-J. Yang, Modification of Microstructure and Electrical Conductivity of Plasma-Sprayed YSZ Deposit Through Post-Densification Process, Mater. Sci. Eng. A, 2006, 428(1-2), p 98-105

    Article  Google Scholar 

  31. Y.-Z. Hu, C.-X. Li, G.-J. Yang, and C.-J. Li, Evolution of Microstructure During Annealing of Mn1.5Co1.5O4 Spinel Coatings Deposited by Atmospheric Plasma Spray, Int. J. Hydrog. Energy, 2014, 39(25), p 13844-13851

    Article  Google Scholar 

  32. S.-L. Zhang, C.-X. Li, C.-J. Li, and G.-J. Yang, Microstructure and Properties of Porous Ni50Cr50-Al2O3 Cermet Support for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2012, 22(2-3), p 158-165

    Article  Google Scholar 

  33. J. Puranen, M. Pihlatie, J. Lagerbom, G. Bolelli, J. Laakso, L. Hyvärinen, M. Kylmälahti, O. Himanen, J. Kiviaho, L. Lusvarghi, and P. Vuoristo, Post-Mortem Evaluation of Oxidized Atmospheric Plasma Sprayed Mn-Co-Fe Oxide Spinel Coatings on SOFC Interconnectors, Int. J. Hydrog. Energy, 2014, 39(30), p 17284-17294

    Article  Google Scholar 

  34. K. Wang, Y. Liu, and J.W. Fergus, Interactions Between SOFC Interconnect Coating Materials and Chromia, J. Am. Ceram. Soc., 2011, 94(12), p 4490-4495

    Article  Google Scholar 

Download references

Acknowledgment

The present project was financially supported by the National Basic Research Program of China (No. 2012CB625100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YZ., Li, CX., Zhang, SL. et al. The Microstructure Stability of Atmospheric Plasma-Sprayed MnCo2O4 Coating Under Dual-Atmosphere (H2/Air) Exposure. J Therm Spray Tech 25, 301–310 (2016). https://doi.org/10.1007/s11666-015-0346-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0346-8

Keywords

Navigation