Skip to main content
Log in

Plasma-Sprayed Thermal Barrier Coatings with Enhanced Splat Bonding for CMAS and Corrosion Protection

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The infiltration of molten CMAS in thermal barrier coatings (TBCs) at high temperature is significantly affected by the microstructure of the ceramic coating. Enhancing the bonding ratio between splats can reduce the interconnected pores and suppress the infiltration of the molten CMAS into the coating. In this study, a dual-layered (DL) TBC with the dense 8YSZ on the top of the conventional porous 8YSZ was proposed to enhance CMAS corrosion of atmospheric plasma-sprayed YSZ. The dense YSZ coating with improved lamellar bonding was deposited at a higher deposition temperature. The microstructure of the coatings before and after CMAS attack test was characterized by scanning electron microscopy. It was clearly revealed that by adjusting the microstructure and applying a dense ceramic layer with the improved interface bonding on the top of porous TBC, the infiltration of CMAS into porous YSZ coating can be effectively suppressed. Moreover, by designing DL TBCs, the thermal conductivity of the TBC system exhibits a limited increase. Thus with the design of DL structure, the TBCs with high CMAS corrosion resistance and low thermal conductivity can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  Google Scholar 

  2. C.U. Hardwickre and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576

    Article  Google Scholar 

  3. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD, A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  Google Scholar 

  4. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95

    Article  Google Scholar 

  5. R. McPherson, A Review on Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39-40, p 173-181

    Article  Google Scholar 

  6. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 83, p 297-310

    Article  Google Scholar 

  7. A.G. Evans, M.Y. He, and J.W. Hutchinson, Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 249-271

    Article  Google Scholar 

  8. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46, p 505-553

    Article  Google Scholar 

  9. S. Kramer, J. Yang, and C. Levi, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89, p 3167-3175

    Article  Google Scholar 

  10. C. Mercer, S. Faulhaber, A.G. Evans, and R. Darolia, A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infiltration, Acta Mater., 2005, 53, p 1029-1039

    Article  Google Scholar 

  11. L.H. Gao, H.B. Guo, S.K. Gong, and H.B. Xu, Plasma-Sprayed La2Ce2O7 Thermal Barrier Coatings Against Calcium-Magnesium-Alumina-Silicate Penetration, J. Eur. Ceram. Soc., 2014, 34, p 2553-2561

    Article  Google Scholar 

  12. B.S. Senturk, H.F. Garces, A.L. Ortiz, G. Dwivedi, S. Sampath, and N.P. Padture, CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions, J. Therm. Spray Technol., 2014, 23(4), p 708-715

    Article  Google Scholar 

  13. W.H. Li, H.Y. Zhao, X.H. Zhong, L. Wang, and S.Y. Tao, Air Plasma-Sprayed Yttria and Yttria Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS), J. Therm. Spray Technol., 2014, 23(6), p 975-983

    Article  Google Scholar 

  14. R.A. Pidani, R.S. Razavi, R. Mozafarinia, and H. Jamali, Improving the Hot Corrosion Resistance of Plasma Sprayed Ceria-Yttria Stabilized Zirconia Thermal Barrier Coatings by Laser Surface Treatment, Mater. Des., 2014, 57, p 336-341

    Article  Google Scholar 

  15. R. Ghasemi, R.S. Razavi, R. Mozafarinia, H. Jamali, M.H. Oghaz, and R.A. Pidani, The Influence of Laser Treatment on Hot Corrosion Behavior of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34, p 2013-2021

    Article  Google Scholar 

  16. P. Mohan, B. Yao, T. Patterson, and Y.H. Sohn, Electrophoretically Deposited Alumina as Protective Overlay for Thermal Barrier Coatings Against CMAS Degradation, Surf. Coat. Technol., 2009, 204, p 797-801

    Article  Google Scholar 

  17. T. Liu, E.J. Yang, C.X. Li, and C.-J. Li, Splat Interface Bonding Formation During Plasma Spraying of LZO Coating, Mater. Res. Innov., 2014, 18, p 973-978

    Google Scholar 

  18. S. Hao, C.-J. Li, and G.J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings, J. Therm. Spray Technol., 2010, 20, p 160-169

    Article  Google Scholar 

  19. Y.Z. Xing, C.-J. Li, Q. Zhang, C.X. Li, and G.J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91, p 3931-3936

    Article  Google Scholar 

  20. S.L. Zhang, C.X. Li, C.-J. Li, Z.H. Han, and G.J. Yang, Scandia-Stabilized Zirconia Electrolyte with Improved Interlamellar Bonding by High-Velocity Plasma Spraying for High Performance Solid Oxide Fuel Cells, J. Power. Sour., 2013, 232, p 123-131

    Article  Google Scholar 

  21. A. Kulkarni, Z. Wang, T. Nakamura, S. Sampath, A. Goland, H. Herman, J. Allen, J. Ilavsky, G. Long, J. Frahm, and R.W. Steinbrech, Comprehensive Microstructural Characterization and Predictive Property Modeling of Plasma-Sprayed Zirconia Coatings, Acta Mater., 2003, 51, p 2457-2475

    Article  Google Scholar 

  22. G.J. Yang, C.X. Li, S. Hao, Y.Z. Xing, E.J. Yang, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation during Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  23. J. Wu, H.B. Guo, Y.Z. Gao, and S.K. Gong, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, J. Eur. Ceram. Soc., 2011, 31, p 1881-1888

    Article  Google Scholar 

  24. R.A. Miller, J.L. Smialek, and P.G. Garlick, Phase Stability in Plasma-Sprayed, Partially Stabilized Zirconia-Yttria, Adv. Ceram., 1981, 3, p 241-253

    Google Scholar 

  25. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys., 1961, 32, p 1679-1684

    Article  Google Scholar 

  26. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  Google Scholar 

  27. N. Markocsan, P. Nylen, J. Wigren, X.H. Li, and A. Tricoire, Effect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 160-169

    Article  Google Scholar 

  28. R. Bolot, J.H. Qiao, G. Bertrand, P. Bertrand, and C. Coddet, Effect of Thermal Treatment on the Effective Thermal Conductivity of YPSZ Coatings, Surf. Coat. Technol., 2010, 205, p 1034-1038

    Article  Google Scholar 

  29. R. Dutton, R. Wheeler, K.S. Ravichandran, and K. An, Effect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1999, 9(2), p 204-209

    Article  Google Scholar 

  30. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow psz Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202, p 1994-2001

    Article  Google Scholar 

  31. C.-J. Li, Y. Li, G.J. Yang, and C.X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21, p 383-390

    Article  Google Scholar 

  32. E. Bakan, D.E. Mack, G. Mauer, R. Mucke, and R. Vassen, Porosity-Property Relationships of Plasma-Sprayed Gd2Zr2O7/YSZ Thermal Barrier Coatings, J. Am. Ceram. Soc., 2015. doi:10.1111/jace.13611

    Google Scholar 

  33. G.J. Yang, Z.L. Chen, C.X. Li, and C.J. Li, Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating During High-Temperature Exposure: Comparison Study Between 8YSZ and 20YSZ, J. Therm. Spray Technol., 2013, 22(8), p 1294-1302

    Article  Google Scholar 

Download references

Acknowledgments

The present project is supported by the National Basic Research Program (Grant No. 2012CB625100) and National Natural Science Foundation (Grant No. 51171144). The authors are grateful for the support of the European Program Marie Curie IPACTS (No. 268696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Yao, SW., Wang, LS. et al. Plasma-Sprayed Thermal Barrier Coatings with Enhanced Splat Bonding for CMAS and Corrosion Protection. J Therm Spray Tech 25, 213–221 (2016). https://doi.org/10.1007/s11666-015-0345-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0345-9

Keywords

Navigation