Skip to main content
Log in

Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Tribomechanical properties of nanostructured coatings deposited by suspension high velocity oxy-fuel (S-HVOF) and conventional HVOF (Jet Kote) spraying were evaluated. Nanostructured S-HVOF coatings were obtained via ball milling of the agglomerated and sintered WC-12Co feedstock powder, which were deposited via an aqueous-based suspension using modified HVOF (TopGun) process. Microstructural evaluations of these hardmetal coatings included transmission electron microscopy, x-ray diffraction, and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that low porosity coatings with nanostructured features were obtained. High carbon loss was observed, but coatings showed a high hardness up to 1000 HV2.9N. S-HVOF coatings also showed improved sliding wear and friction behavior, which were attributed to nanosized particles reducing ball wear in three-body abrasion and support of metal matrix due to uniform distribution of nanoparticles in the coating microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-based Microstructures from Agglomerated Nanostructured Particles, Suspension and Solutions: An Invited Review, J. Phys. D, 2011, 44, p 093001

    Article  Google Scholar 

  2. J. Oberste Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681

    Article  Google Scholar 

  3. V. Chawla, B.S. Sidhu, D. Puri, and S. Prakash, State of Art: Plasma Sprayed Nanostructured Coatings: A Review, Mater. Forum, 2008, 32, p 137-143

    Google Scholar 

  4. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Synthesis, Sintering, and Mechanical Properties of Nanocrystalline Cemented—A Review, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 288-299

    Article  Google Scholar 

  5. L.-M. Berger, Comprehensive Hard Materials, Hardmetals, Vol 1, V. Sarin, D. Mari, L. Llanes, and C. Nebel, Ed., Elsevier, Amsterdam, 2014, p 479-514

    Google Scholar 

  6. V. Stoica, R. Ahmed, T. Itsukaichi, and S. Tobe, Sliding Wear Evaluation of HIPed Thermal Spray Cermet Coatings, Wear, 2004, 257(11), p 1103-1124

    Article  Google Scholar 

  7. S. Stewart, R. Ahmed, and T. Itsukaichi, Rolling Contact Fatigue of Post-treated WC-NiCrBSi Thermal Spray Coatings, Surf. Coat. Technol., 2005, 190(2-3), p 171-189

    Article  Google Scholar 

  8. R. Ahmed and M. Hadfield, Mechanisms of Fatigue Failure in Thermal Spray Coatings, J. Therm. Spray Technol., 2002, 11(3), p 333-349

    Article  Google Scholar 

  9. Š. Houdková, F. Zahálka, M. Kašparová, and L.-M. Berger, Comparative Study of Thermally Sprayed Coatings Under Different Types of Wear Conditions for Hard Chromium Replacement, Tribol. Lett., 2011, 43(2), p 139-154

    Article  Google Scholar 

  10. F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann, and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19(1-2), p 262-274

    Article  Google Scholar 

  11. V. Bonache, M.D. Salvador, J.C. García, E. Sánchez, and E. Bannier, Influence of Plasma Intensity on Wear and Erosion Resistance of Conventional and Nanometric WC-Co Coatings Deposited by APS, J. Therm. Spray Technol., 2011, 20(3), p 549-559

    Article  Google Scholar 

  12. E. Sánchez, E. Bannier, M.D. Salvador, V. Bonache, J.C. García, J. Morgiel, and J. Grzonka, Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2010, 19(5), p 964-974

    Article  Google Scholar 

  13. G. Bolelli, V. Cannillo, L. Lusvarghi, R. Rosa, A.V. Wanhuk, B. Choib, R. Dey, C. Weyant, and S. Sampath, Functionally Graded WC-Co/NiAl HVOF Coatings for Damage Tolerance, Wear and Corrosion Protection, Surf. Coat. Technol., 2012, 206(8-9), p 2585-2601

    Article  Google Scholar 

  14. H. Chen, G. Gou, M. Tu, and Y. Liu, Research on the Friction and Wear Behavior at Elevated Temperature of Plasma-Sprayed Nanostructured WC-Co Coatings, J. Mater. Eng. Perform., 2010, 19(1), p 1-6

    Article  Google Scholar 

  15. H.L. de Villiers Lovelock, Powder/Processing/Structure Relationship in WC-Co Thermal Spray Coatings: A Review of the Published Literature, J. Therm. Spray Technol., 1998, 7(3), p 357-373

    Article  Google Scholar 

  16. S. Stewart and R. Ahmed, Contact Fatigue Failure Modes in Hot Isostatically Pressed WC-12%Co Coatings, Surf. Coat. Technol., 2003, 172(2-3), p 204-216

    Article  Google Scholar 

  17. V. Stoica and R. Ahmed, Influence of Vacuum Heat Treatment on Sliding Wear of Thermal Spray Cermet Coatings, Surf. Coat. Technol., 2005, 199(1), p 7-21

    Article  Google Scholar 

  18. V. Stoica, R. Ahmed, and S. Tobe, Wear of Hot Isostatically Pressed (HIPed) Thermal Spray Cermet Coatings, J. Therm. Spray Technol., 2004, 13(1), p 93-107

    Google Scholar 

  19. P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2007, 202(3), p 509-521

    Article  Google Scholar 

  20. J. He and J.M. Schoenung, Nanostructured Coatings, Mater. Sci. Eng. A, 2002, 336, p 274-319

    Article  Google Scholar 

  21. R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick, and K.A. Khor, Neutron Diffraction Residual Strain Measurements in Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, J. Mech. Behav. Biomater., 2011, 4(8), p 2043-2054

    Article  Google Scholar 

  22. F. Tarasi, “Suspension Plasma Sprayed Alumina-Yttria Stabilized Zirconia Nanocomposite Thermal Barrier Coatings-Formation and Roles of the Amorphous Phase,” Ph.D. Thesis, Concordia University, 2010

  23. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  24. P. Fauchais and A. Vardelle, Innovative and Emerging Processes in Plasma Spraying: From Micro-to Nanostructured Coatings, J. Phys. D, 2011, 44, p 194011

    Article  Google Scholar 

  25. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223

    Article  Google Scholar 

  26. M. Couto, S. Dosta, M. Torrell, J. Fernández, and J.M. Guilemany, Cold Spray Deposition of WC-17 and 12Co Cermets onto Aluminum, Surf. Coat. Technol., 2013, 235, p 54-61

    Article  Google Scholar 

  27. J.M. Guilemany, S. Dosta, J. Nin, and J.R. Miguel, Study of the Properties of WC-Co Nanostructured Coatings Sprayed by High-Velocity Oxy Fuel, J. Therm. Spray Technol., 2005, 14(3), p 405-413

    Article  Google Scholar 

  28. Z.-G. Ban and L.L. Shaw, Characterization of Thermal Sprayed Nanostructured WC-Co Coatings Derived from Nanocrystalline WC-18wt.%Co Powders, J. Therm. Spray Technol., 2003, 12, p 112-119

    Article  Google Scholar 

  29. F.-L. Toma, L.-M. Berger, S. Scheitz, S. Langner, C. Rödel, A. Potthoff, V. Sauchuk, and M. Kusnezoff, Comparison of the Microstructural Characteristics and Electrical Properties of Thermally Sprayed Al2O3 Coatings from Aqueous Suspensions and Feedstock Powders, J. Therm. Spray Technol., 2012, 21(3-4), p 480-488

    Article  Google Scholar 

  30. L.-M. Berger, F.-L. Toma, and A. Potthoff, Thermal Spraying with Suspensions—An Economic Spray Process, Therm. Spray Bull., 2013, 6(2), p 98-101

    Google Scholar 

  31. F.-L. Toma, L.-M. Berger, S. Langner, and T. Naumann, Suspension Spraying-The Potential of a New Spray Technology, Therm. Spray Bull., 2010, 3(1), p 24-29

    Google Scholar 

  32. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach for Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201(5), p 1922-1929

    Article  Google Scholar 

  33. A. Killinger, R. Gadow, A. Rempp, and A. Manzat, Advanced Ceramic Tribological Layers by Thermal Spray Routes, Adv. Sci. Technol., 2010, 66, p 106-119

    Article  Google Scholar 

  34. K. Korpiola, “High Temperature Oxidation of Metal, Alloy and Cermet Powders in HVOF Spraying Process,” Dissertation, Helsinki University of Technology, 2006

  35. N.H. Faisal, J.A. Steel, R. Ahmed, and R.L. Reuben, The Use of Acoustic Emission (AE) to Characterise Vickers Indentation Behaviour of HVOF Thermally Sprayed WC-12%Co Coatings, J. Therm. Spray Technol., 2009, 18(4), p 525-535

    Article  Google Scholar 

  36. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583

    Article  Google Scholar 

  37. S. Osawa, T. Itsukaichi, and R. Ahmed, Influence of Powder Size and Strength on HVOF Spraying—Mapping the Onset of Spitting, Advancing the Science and Applying the Technology, International Thermal Spray Conference, FL, USA, 2003, p 819-824

  38. S. Thiele, K. Sempf, K. Jaenicke-Roessler, L.-M. Berger, and J. Spatzier, Thermophysical and Microstructural Studies on Thermally Sprayed Tungsten Carbide-Cobalt Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 358-365

    Article  Google Scholar 

  39. C. Verdon, A. Karimi, and J.-L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng., 1998, A246(1-2), p 11-24

    Article  Google Scholar 

  40. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Microstructural Evolution in Thermally Sprayed WC-Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48(7), p 1593-1604

    Article  Google Scholar 

  41. A.S. Kurlov and A.I. Gusev, Tungsten Carbides and W-C Phase Diagram, Neorganicheskie Materialy, 2006, 42(2), p 156-163, [in Russian] [Inorganic Materials, 2006, 42(2), p 121-127, in English]

  42. R. Ahmed, H. Yu, L. Edwards, and J. Santisteban, Neutron Diffraction Residual Strain Measurements in Post-treated Thermal Spray Cermet Coatings, Mater. Sci. Eng. A, 2008, 498, p 191-202

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the support of Youssef Elakwah at Alfaisal University KSA in conducting the nanoindentation experiments. Irina Shakhverdova (Fraunhofer IWS) is thanked for support in evaluation of XRD pattern. Financial support of Saudi Aramco for the research project is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, R., Faisal, N.H., Al-Anazi, N.M. et al. Structure Property Relationship of Suspension Thermally Sprayed WC-Co Nanocomposite Coatings. J Therm Spray Tech 24, 357–377 (2015). https://doi.org/10.1007/s11666-014-0174-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0174-2

Keywords

Navigation