Skip to main content
Log in

Latest Developments in Suspension and Liquid Precursor Thermal Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The interest to manufacture onto large surfaces thick (i.e., 10-20 μm, average thickness) finely structured or nanostructured layers is increasingly growing since the past 10 years. This explains the interest for suspension thermal spraying (STS) and solution precursor thermal spraying (SPTS), both allowing manufacturing finely structured layers of thicknesses varying between a few micrometers up to a few hundreds of micrometers. STS aims at processing a suspension of sub-micrometer-sized or even nanometer-sized solid particles dispersed in a liquid phase. The liquid phase permits the injection of particles in the thermal flow (i.e., due to their size, a carrier gas cannot play this role). SPTS aims at processing a solution of precursors under the same conditions. Upon evaporation of the liquid phase, the precursor concentration increases until precipitation, pyrolysis, and melting of small droplets occur. Compared to conventional thermal spray routes, STS and SPTS are by far more complex because fragmentation and vaporization of the liquid control the coating build-up mechanisms. Numerous studies are still necessary to reach a better understanding of the involved phenomena and to further develop the technology, among which are injection systems, suspension and solution optimizations, spray kinematics, etc. This review presents some recent developments and our present knowledge in this field together with the available tools implemented to characterize the plasma-liquid interaction and the coating formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and Advances in Nanocomposite Processing Techniques, Mater. Sci. Eng., 2006, R54, p 121-285

    CAS  Google Scholar 

  2. R. Gadow, F. Kern, and A. Killinger, Manufacturing Technologies for Nanocomposite Ceramic Structural Materials and Coatings, Mater. Sci. Eng., 2008, B148, p 58-64

    Article  Google Scholar 

  3. P. Fauchais, R. Etchart-Salas, V. Rat, J.-F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  CAS  ADS  Google Scholar 

  4. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63

    Article  CAS  ADS  Google Scholar 

  5. F. Ben-Ettouil, O. Mazhorova, B. Pateyron, H. Ageorges, M. El-Ganaoui, and P. Fauchais, Predicting Dynamic and Thermal Histories of Agglomerated Particles Injected within a d.c. Plasma Jet, Surf. Coat. Technol., 2008, 202, p 4491-4495

    Article  CAS  Google Scholar 

  6. D.J. Branagan, M. Breitsameter, B.E. Meacham, and V. Belashchenko, High-Performance Nanoscale Composite Coatings for Boiler Applications, J. Therm. Spray Technol., 2005, 14(2), p 196-204

    Article  ADS  Google Scholar 

  7. D.J. Branagan, W.D. Swank, and B.E. Meacham, Maximizing the Glass Fraction in Iron-Based High Velocity Oxy-Fuel Coatings, Met. Mater. Trans. A, 2009, 40(6), p 1306-1313

    Article  Google Scholar 

  8. S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17(1), p 60-72

    Article  ADS  Google Scholar 

  9. K. Wittmann-Ténèze, K. Vallé, L. Bianchi, P. Belleville, and N. Caron, Nanostructured Zirconia Coatings Processed by PROSOL Deposition, Surf. Coat. Technol., 2008, 202, p 4349-4354

    Article  Google Scholar 

  10. P. Fauchais, V. Rat, J.-F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202, p 4309-4317

    Article  CAS  Google Scholar 

  11. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  CAS  ADS  Google Scholar 

  12. J. Oberste-Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  ADS  Google Scholar 

  13. J. Oberste-Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681

    Article  ADS  Google Scholar 

  14. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach for Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201, p 1922-1929

    Article  CAS  Google Scholar 

  15. R. Gadow, A. Killinger, and J. Rauch, New Results in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2008, 202, p 4329-4336

    Article  CAS  Google Scholar 

  16. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 2132-2138

    Article  CAS  Google Scholar 

  17. R. Rampon, C. Filiatre, and G. Bertrand, Suspension Plasma Spraying of Y-PSZ Coatings: Suspension Atomization and Injection, J. Therm. Spray Technol., 2008, 17(1), p 105-114

    Article  CAS  ADS  Google Scholar 

  18. R. Rampon, F.-L. Toma, G. Bertrand, and C. Coddet, Liquid Plasma Sprayed Coatings of Yttria-Stabilized Zirconia for SOFC Electrolytes, J. Therm. Spray Technol., 2006, 15(4), p 682-688

    Article  CAS  ADS  Google Scholar 

  19. R. Jaworski, L. Pawlowski, F. Roudet, S. Kozerski, and A. Le Maguere, Influence of Suspension Plasma Spraying Process Parameters on TiO2 Coatings Microstructure, J. Therm. Spray Technol., 2008, 17(1), p 73-81

    Article  CAS  ADS  Google Scholar 

  20. A. Ozturk and B.M. Cetegen, Morphology of Ceramic Particulates Formed in a Premixed Oxygen/Acetylene Flame from Liquid Precursor Droplets, Acta Mater., 2005, 53, p 2531-2544

    Article  CAS  Google Scholar 

  21. L. Xie, D. Chen, E.H. Jordan, A. Ozturk, F. Wu, X. Ma, B.M. Cetegen, and M. Gell, Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201, p 1058-1064

    Article  CAS  Google Scholar 

  22. H. Podlesak, L. Pawlowski, J. Laureyns, R. Jaworski, and T. Lampke, Advanced Microstructural Study of Suspension Plasma Sprayed Titanium Oxide Coatings, Surf. Coat. Technol., 2008, 202, p 3723-3731

    CAS  Google Scholar 

  23. R. Rampon, O. Marchand, C. Filiatre, and G. Bertrand, Influence of Suspension Characteristics on Coatings Microstructure Obtained by Suspension Plasma Spraying, Surf. Coat. Technol., 2008, 202, p 4337-4342

    Article  CAS  Google Scholar 

  24. E.H. Jordan, M. Gell, P. Benzani, D. Chen, S. Basa, B. Cetegem, F. Wa, and X.C. Ma, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, 2007, p 463-467

  25. P. Blazdell and S. Kuroda, Plasma Spraying of Submicron Ceramic Suspensions Using a Continuous Ink Jet Printer, Surf. Coat. Technol., 2000, 123(2-3), p 239-246

    Article  CAS  Google Scholar 

  26. R. Etchart-Salas, V. Rat, J.-F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre, Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5-6), p 857-865

    Article  CAS  ADS  Google Scholar 

  27. C. Marchand, A. Vardelle, G. Mariaux, and P. Lefort, Modeling of the Plasma Spray Process with Liquid Feedstock Injection, Surf. Coat. Technol., 2008, 202, p 4458-4464

    Article  CAS  Google Scholar 

  28. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183(1), p 51-61

    Article  CAS  Google Scholar 

  29. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  CAS  ADS  Google Scholar 

  30. J. Fazilleau, C. Delbos, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391

    Article  CAS  Google Scholar 

  31. R. Etchart-Salas, “Plasma Spraying of Suspensions of Sub-Micrometer Particles. Analytical and Experimental Approaches of the Phenomena Controlling the Reproducibility and Quality of Coatings,” Ph.D. Thesis, University of Limoges, France, 2007 (in French)

  32. C. Delbos, J. Fazilleau, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414

    Article  CAS  Google Scholar 

  33. F. Ben-Ettouil, A. Denoirjean, A. Grimaud, G. Montavon, and P. Fauchais, Sub-Micrometer-Sized Y-PSZ Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying: Process, Structure and Some Functional Properties, These Proceedings

  34. E. Brousse, G. Montavon, P. Fauchais, A. Denoirjean, V. Rat, J.-F. Coudert, and H. Ageorges, Thin and Dense Yttria-Partially Stabilized Zirconia Electrolytes for IT-SOFC Manufactured by Suspension Plasma Spraying, Thermal Spray Crossing Borders, June 2-4, 2008, Maastricht, The Netherlands, E. Lugscheider, Ed., DVS, Düsseldorf, Germany, 2008, p 547-552

  35. F.-L. Toma, L.-M. Berger, T. Naumann, and S. Langner, Microstructures of Nanostructured Ceramic Coatings Obtained by Suspension Thermal Spraying, Surf. Coat. Technol., 2008, 202, p 4343-4348

    Article  CAS  Google Scholar 

  36. F.-L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B, 2006, 68, p 74-84

    Article  CAS  Google Scholar 

  37. F.-L. Toma, G. Bertrand, S.-O. Chwa, C. Meunier, D. Klein, and C. Coddet, Comparative Study on the Photocatalytic Decomposition of Nitrogen Oxides Using TiO2 Coatings Prepared by Conventional Plasma Spraying and Suspension Plasma Spraying, Surf. Coat. Technol., 2006, 200, p 5855-5862

    Article  CAS  Google Scholar 

  38. D. Chen, E.H. Jordan, and M. Gell, Porous TiO2 Coating using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 6113-6119

    Article  CAS  Google Scholar 

  39. R. Tomaszek, L. Pawlowski, L. Gengembre, J. Laureyns, and A. Le Maguer, Microstructure of Suspension Plasma Sprayed Multilayer Coatings of Hydroxyapatite and Titanium Oxide, Surf. Coat. Technol., 2007, 201, p 7432-7440

    Article  CAS  Google Scholar 

  40. G. Bolelli, J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, and R. Gadow, Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Glass Coatings, Mater. Lett., 2008, 62, p 2772-2775

    Article  CAS  Google Scholar 

  41. G. Darut, H. Ageorges, A. Denoirjean, G. Montavon, and P. Fauchais, Effect of the Structural Scale of Plasma-Sprayed Alumina Coatings on Their Friction Coefficients, J. Therm. Spray Technol., 2008, 17(5-6), p 788-795

    Article  CAS  ADS  Google Scholar 

  42. A.L. Vasiliev, N.P. Padture, and X. Ma, Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2–Al2O3 System, Acta Mater., 2006, 54(18), p 4913-4920

    Article  CAS  Google Scholar 

  43. A.L. Vasiliev, N.P. Padture, and X. Ma, Coatings of Metastable Ceramics Deposited by Solution Precursor Plasma Spray: II. Ternary ZrO3–Y2O3-Al2O3 System, Acta Mater., 2006, 54(18), p 4921-4928

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Fauchais or Ghislain Montavon.

Additional information

This article is an invited paper selected from presentations at the 2009 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Expanding Thermal Spray Performance to New Markets and Applications: Proceedings of the 2009 International Thermal Spray Conference, Las Vegas, Nevada, USA, May 4-7, 2009, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauchais, P., Montavon, G. Latest Developments in Suspension and Liquid Precursor Thermal Spraying. J Therm Spray Tech 19, 226–239 (2010). https://doi.org/10.1007/s11666-009-9446-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9446-7

Keywords

Navigation