Skip to main content
Log in

Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The study presents a comprehensive research on the plasma spray fabrication of TiO2 coatings with microstructural properties adjustable via controlling the respective in-flight properties of the feedstock particles. The in-flight properties can be, in return, governed by tuning the plasma system spray parameters. By determining and linking the two interrelationships, a connection between the important coating characteristics (composition, microstructure, surface and mechanical properties) to the plasma system settings was established. It was shown that by changing the values of six parameters representing the flexibility of the plasma system, the temperatures and velocities of the particles within the jet can be altered from 2125 to 2830 K and 137 to 201 m s−1, respectively. The values of the in-flight temperature critically influenced the efficiency of the coating build-up (values ranging from 8 to 84 μm per 1 torch pass) and the content of anatase phase in the fabricated coatings (0-5.8%), while the in-flight velocity of the TiO2 particles was found to be connected to the porosity of the coatings (ranging from 14.4 to 26.2%) and the adhesion strength at the coating-substrate interface (2.6 × difference).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Hench, Bioceramics—From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487-1510

    Article  Google Scholar 

  2. J. Xu, D. Joguet, J. Cizek, K. Khor, H. Liao, C. Coddet, and W. Chen, Synthesis and Characterization on Atomphospheric Plasma Sprayed Amorphous Silica Doped Hydrxoyapatite Coatings, Surf. Coat. Technol., 2012, 206(22), p 4659-4665

    Article  Google Scholar 

  3. R. Lima, H. Li, K. Khor, and B. Marple,Biocompatible Nanostructured High-Velocity Oxyfuel Sprayed Titania Coating: Deposition, Characterization, and Mechanical Properties. J. Therm. Spray Technol., 2006, 15(4), p 623-627

    Article  Google Scholar 

  4. R. Lima, B. Marple, H. Li, and K. Khor, Titania Thermal Spray Coatings Made from a Nanostructured Feedstock: An Alternative as a Biomedical Coating, in Proc. ASM Materials and Processes for Medical Devices, ASM International, (2005)

  5. M. Gardon and J. Guilemany, Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review. J. Therm. Spray Technol., 2014, 23(4), p 577-595

    Article  Google Scholar 

  6. C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo, and L. Ericson, BBone Response to Surface Modified Titanium Implants: Studies on Electropolished Implants with Different Oxide Thicknesses and Morphology. Biomaterials 1994, 15(13), p 1062-1074

    Article  Google Scholar 

  7. N. Huang, Y. Chen, J. Luo, J. Yi, R. Lu, J. Xiao, Z. Xue, and X. Liu, In Vitro Investigation of Blood Compatibility of Ti with Oxide Layers of Rutile Structure. J. Biomater. Appl., 1994, 8(4), p 404-412

    Article  Google Scholar 

  8. I. Tsyganov, M. Maitz, E. Wieser, F. Prokert, E. Richter, and A. Rogozin, Structure and Properties of Titanium Oxide Layers Prepared by Metal Plasma Immersion Ion Implantation and Deposition, Surf. Coat. Technol., 2003, 174-175, p 591-596

    Article  Google Scholar 

  9. P. Fauchais, Understanding Plasma Spraying, J. Phys. D, 2004, 37(9), p R86-R108

    Article  Google Scholar 

  10. H. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Cryst. 22, 151-152 (1967)

    Article  Google Scholar 

  11. S. Forberg, Ceramic Containers for Spent Nuclear Fuel: On the Corrosion Resistance of Rutile, Adv. Ceram., 1986, 20, 321-327

    Google Scholar 

  12. P. Gouma and M. Mills, Anatase-to-Rutile Transformation in Powders, J. Am. Ceram. Soc., 2001, 84(3), p 619-622

    Article  Google Scholar 

  13. R. Shannon and J. Pask, Kinetics of the Anatase-Rutile Transformation, J. Am. Ceram. Soc., 1965, 48(8), p 391-398

    Article  Google Scholar 

  14. J. Cizek and K. Khor, Role of In-Flight Temperature and Velocity of Powder Particles on Plasma Sprayed Hydroxyapatite Coating Characteristics, Surf. Coat. Technol., 2012, 206(8-9), p 2181-2191

    Article  Google Scholar 

  15. G. Taguchi, Quality Engineering in Production Systems, McGraw-Hill, New York, 1988

    Google Scholar 

  16. J. Cizek, K. Khor, and I. Dlouhy, In-Flight Temperature and Velocity of Powder Particles of Plasma-Sprayed TiO2, J. Therm. Spray Technol., 2013, 22(8), p 1320-1327

    Article  Google Scholar 

  17. ASTM International, ASTM F-136 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), (2008)

  18. ASTM International, ASTM F-1580 Standard Specification for Titanium and Titanium-6 Aluminum-4 Vanadium Alloy Powders for Coatings of Surgical Implants, (2007)

  19. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splay Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  20. International Organization for Standardization, ISO standard 4287: Geometrical Product Specifications—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters, (1997)

  21. W. Oliver, G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583

    Article  Google Scholar 

  22. P. Ctibor and M. Hrabovsky, Plasma Sprayed TiO2: The Influence of Power of an Electric Supply on Particle Parameters in the Flight and Character of Sprayed Coating, J. Eur. Ceram. Soc., 2010, 30(15), p 3131-3136

    Article  Google Scholar 

  23. R. Ahmed, N. Faisal, S. Knupfer, A. Paradowska, M. Fitzpatrick, K. Khor, and J. Cizek, Neutron Diffraction Residual Strain Measurements in Plasma Sprayed Nanostructured Hydroxyapatite Coatings for Orthopaedic Implants, Mater. Sci. Forum, 2010, 652, p 309-314

    Article  Google Scholar 

  24. L. Dong, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, and G. Han, Hydrothermal Growth of Rutile TiO2 Nanorod Films on Titanium Substrates, Thin Solid Films, 2011, 519(15), p 4634-4640

    Article  Google Scholar 

  25. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829

    Article  Google Scholar 

  26. R. Tomaszek, L. Pawlowski, L. Gengembre, J. Laureyns, Z. Znamirowski, and J. Zdanowski, Microstructural Characterization of Plasma Sprayed TiO2 Functional Coating with Gradient of Crystal Grain Size, Surf. Coat. Technol., 2006, 201(12), p 45-56

    Article  Google Scholar 

  27. M. Gaona, R.S. Lima, and B.R. Marple, Influence of Particle Temperature and Velocity on the Microstructure and Mechanical Behaviour of High Velocity Oxy-Fuel (hvof)-Sprayed Nanostructured Titania Coatings, J. Mater. Process Technol., 2008, 198(1-3), p 426-435

    Article  Google Scholar 

  28. M. Vilemova, J. Matejicek, R. Musalek, and J. Nohava, Application of Structure-Based Models of Mechanical and Thermal Properties on Plasma Sprayed Coatings, J. Therm. Spray Technol., 2012, 21(3-4), p 372-382

    Article  Google Scholar 

  29. Z. Prochazka, K. Khor, and J. Cizek, Influence of Input Parameters on Splat Formation and Coating Thermal Diffusivity in Plasma Spraying, Adv. Eng. Mater., 2006, 8(7), p 645-650

    Article  Google Scholar 

  30. R. Dhiman, A. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201(18), p 7789-7801

    Article  Google Scholar 

  31. C. Kang and H. Ng, Splat Morphology and Spreading Behavior Due to Oblique Impact of Droplets onto Substrates in Plasma Spray Coating Process, Surf. Coat. Technol., 2006, 200(18-19), p 5462-5477

    Article  Google Scholar 

  32. M. Planche, B. Normand, E. Suzon, and C. Coddet, The Relationships Between In-Flight particles Characteristics and Coatings Properties Under Plasma Spraying Conditions, in Thermal Spray 2001: New Surfaces for a New Millenium, p 771-777, ASM International, (2001)

Download references

Acknowledgments

The present work has been carried out within NETME Centre established thanks to financial support of European Regional Development Fund under the Operational Programme Research and Development for Innovation. The presented results have been obtained within Netme Centre Plus (LO1202) project co-funded by the Ministry of Education, Youth and Sports within the support programme “National Sustainability Programme I”. Support of Czech Science Foundation project GACR 13-35890S is further acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Cizek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizek, J., Dlouhy, I., Siska, F. et al. Modification of Plasma-sprayed TiO2 Coatings Characteristics via Controlling the In-flight Temperature and Velocity of the Powder Particles. J Therm Spray Tech 23, 1339–1349 (2014). https://doi.org/10.1007/s11666-014-0132-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0132-z

Keywords

Navigation