Skip to main content
Log in

Effect of HVOF Processing Parameters on the Properties of NiCoCrAlY Coatings by Design of Experiments

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The effect of three principal, independent, high-velocity oxygen fuel (HVOF)-processing parameters on the properties of NiCoCrAlY coatings deposited using commercial powders is reported here. The design of experiments (DoE) technique at a two-level factorial and a central composite rotatable design was used to analyze and optimize the HVOF spraying process. The deposition parameters investigated were (1) fuel flow, (2) oxygen flow, and (3) stand-off distance. The effect of these processing variables was evaluated using selected responses, including porosity and oxide content, residual stresses, and deposition efficiency. Coatings with low porosity as well as with low residual stress were obtained using high fuel-rich conditions at a stand-off distance between 250 and 300 mm. At shorter and longer stand-off distances, respectively, either excessive flattening of splats or un-molten condition occurred, resulting in high levels of porosity and residual stress. The response surface, the empirical relationships among the variables, and the response parameters allowed the selection of optimum deposition parameters and the improvement of coating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Gurrappa and A. Sambasiva Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, Surf. Coat. Technol., 2006, 201(6), p 3016-3029

    Article  Google Scholar 

  2. J.R. Nicholls, N.J. Simms, W.Y. Chan, and H.E. Evans, Smart Overlay Coatings—Concept and Practice, Surf. Coat. Technol., 2002, 149(2–3), p 236-244

    Article  Google Scholar 

  3. B. Baufeld and M. Schmqcker, Microstructural Evolution of a NiCoCrAlY Coating on an IN100 Substrate, Surf. Coat. Technol., 2005, 199(1), p 49-56

    Article  Google Scholar 

  4. C. Leyens, U. Schulz, B.A. Pint, and I.G. Wright, Influence of Electron Beam Physical Vapor Deposited Thermal Barrier Coating Microstructure on Thermal Barrier Coating System Performance under Cyclic Oxidation Conditions, Surf. Coat. Technol., 1999, 120–121, p 68-76

    Article  Google Scholar 

  5. J.A. Haynes, M.K. Ferber, and W.D. Porter, Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAlX Bond Coats, J. Therm. Spray Technol., 2000, 9(1), p 38-48

    Article  Google Scholar 

  6. W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, and P.C. Patnaik, TGO Growth Behaviour in TBCs with APS and HVOF Bond Coats, Surf. Coat. Technol., 2008, 202(12), p 2677-2683

    Article  Google Scholar 

  7. E. Lugscheider, C. Herbst, and L. Zhao, Parameter Studies on High-Velocity Oxy-Fuel Spraying of MCrAlY Coatings, Surf. Coat. Technol., 1998, 108–109(1–3), p 16-23

    Article  Google Scholar 

  8. Y.-M. Yang, H. Liao, and C. Coddet, Simulation and Application of a HVOF Process for MCrAIY Thermal Spraying, J. Therm. Spray Technol., 2002, 11(1), p 36-43

    Article  Google Scholar 

  9. D. Toma, W. Brandl, and U. Köster, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings, Oxid. Met., 2000, 53, p 125-137

    Article  Google Scholar 

  10. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, 2004

  11. Lech Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, London, 2008

    Book  Google Scholar 

  12. W. Brandl, D. Toma, J. Krüger, H.J. Grabke, and G. Matthäus, The Oxidation Behavior of HVOF Thermal-Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1997, 94–95, p 21-26

    Article  Google Scholar 

  13. B.Q. Wang and W.L. Seong, Erosion-Corrosion Behaviour of HVOF NiAl–Al2O3 Intermetallic-Ceramic Coating, Wear, 2000, 239(1), p 83-90

    Article  Google Scholar 

  14. S. Pahlavanyali, A. Sabour, and M. Hirbod, The Hot Corrosion Behaviour of HVOF Sprayed MCrAlX Coatings Under Na2SO4 (+NaCl) Salt Films, Mater. Corros., 2003, 54(9), p 687-693

    Article  Google Scholar 

  15. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and its Role in Microstructural Evolution of Metallic Thermal Spray Coatings—Case Study for Ni–Al, Surf. Coat. Technol., 2006, 200(18–19), p 5395-5406

    Article  Google Scholar 

  16. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  17. J. Matejicek and S. Sampath, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings: Part 1: Apparatus and Analysis, Acta Mater., 2003, 51(3), p 863-872

    Article  Google Scholar 

  18. J. Saaedi, T.W. Coyle, H. Arabi, S. Mirdamadi, and J. Mostaghimi, Effects of HVOF Process Parameters on the Properties of Ni–Cr Coatings, J. Therm. Spray Technol., 2010, 19(3), p 521-530

    Article  Google Scholar 

  19. D. Zois, T. Wentz, R. Dey, S. Sampath, and C.M. Weyant, Simplified Model for Description of HVOF NiCr Coating Properties Through Experimental Design and Diagnostic Measurements, J. Therm. Spray Technol., 2013, 22(2–3), p 299-315

    Article  Google Scholar 

  20. R. Kingswell, K.T. Scott, and L.L. Wassell, Optimizing the Vacuum Plasma Spray Deposition of Metal, Ceramic, and Cermet Coatings Using Designed Experiments, J. Therm. Spray Technol., 1993, 2(2), p 179-185

    Article  Google Scholar 

  21. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20(3), p 590-607

    Article  Google Scholar 

  22. W. Tillmann, E. Vogli, I. Baumann, G. Kopp, and C. Weihs, Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 392-408

    Article  Google Scholar 

  23. Thermal Spray Materials Guide, Issue: May 2012

  24. G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc., 1909, A82, p 172-175

    Article  Google Scholar 

  25. A. Brenner and S. Senderoff, Calculation of Stress in Electrodeposits from the Curvature of a Plated Strip, J. Res. Natl. Bur. Stand., 1949, 42(105), p 105-123

    Article  Google Scholar 

  26. K. Shinoda, Y. Tan, and S. Sampath, Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying, Plasma Chem. Plasma Process., 2010, 30(6), p 761-778

    Article  Google Scholar 

  27. A. Valarezo, W.B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process Control and Characterization of NiCr Coatings by HVOF-DJ2700 System: A Process Map Approach, J. Therm. Spray Technol., 2010, 19(5), p 852-865

    Article  Google Scholar 

  28. W. Rusch, Comparison of Operating Characteristics for Gas and Liquid Fuel HVOF Torches, Thermal Spray 2007: Global Coating Solutions, ASM International, May 14–16, 2007 (Beijing, China), ASM International, 2007, p 572–576

  29. W. Brandl, H.J. Grabke, D. Toma, and J. Krüger, The Oxidation Behaviour of Sprayed MCrAIY Coatings, Surf. Coat. Technol., 1996, 86–87, p 41-47

    Article  Google Scholar 

  30. K. Fritscher and Y.-T. Lee, Investigation of an As-Sprayed NiCoCrAlY Overlay Coating—Microstructure and Evolution of the Coating, Mater. Corros., 2005, 56(1), p 5-14

    Article  Google Scholar 

  31. A. Valarezo, “Process Design for Reliable High Velocity Thermal Spray Coatings: An Integrated Approach through Process Maps and Advanced in situ Characterization,” Ph.D. Thesis, Stony Brook University, 2008

  32. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J. Therm. Spray Technol., 1992, 1(4), p 325-332

    Article  Google Scholar 

  33. S. J. Matthews, “Erosion-Corrosion of Cr3C2-NiCr High Velocity Thermal Spray Coatings,” Ph.D. Thesis, The University of Auckland, 2004

  34. J. Saaedi, T.W. Coyle, H. Arabi, S. Mirdamadi, and J. Mostaghimi, Effects of HVOF Process Parameters on the Properties of Ni-Cr Coatings, J. Therm. Spray Technol., 2010, 19(3), p 521-530

    Article  Google Scholar 

  35. K. Dobler, H. Kreye, and R. Schwetzke, Oxidation of Stainless Steel in the High Velocity Oxy-Fuel Process, J. Therm. Spray Technol., 2000, 9(3), p 407-413

    Article  Google Scholar 

  36. J. He, M. Ice, and E. Lavernia, Particle Melting Behavior During High-Velocity Oxygen Fuel Thermal Spraying, J. Therm. Spray Technol., 2001, 10(1), p 83-93

    Article  Google Scholar 

  37. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, Oxidation in Wire HVOF-Sprayed Steel, J. Therm. Spray Technol., 1998, 7(4), p 537-545

    Article  Google Scholar 

  38. D.C. Montgomery, Diseño y Análisis de Experimentos (Design and Analysis of Experiments), 3rd ed., Grupo Editorial Iberoamérica, México, 1991 ((in Spanish))

    Google Scholar 

  39. Design-Expert Software, V8 User’s Guide, Technical Manual, Stat Ease, Inc., Minneapolis, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Muñoz-Saldaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Luna, H., Lozano-Mandujano, D., Alvarado-Orozco, J.M. et al. Effect of HVOF Processing Parameters on the Properties of NiCoCrAlY Coatings by Design of Experiments. J Therm Spray Tech 23, 950–961 (2014). https://doi.org/10.1007/s11666-014-0121-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0121-2

Keywords

Navigation