Skip to main content
Log in

Effect of Operating Parameters on a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High velocity oxygen fuel (HVOF) thermal spray systems are being used to apply coatings to prevent surface degradation. The coatings of temperature sensitive materials such as titanium and copper, which have very low melting points, cannot be applied using a single-stage HVOF system. Therefore, a dual-stage HVOF system has been introduced and modeled computationally. The dual-spray system provides an easy control of particle oxidation by introducing a mixing chamber. In addition to the materials being sprayed, the thermal spray coating quality depends to a large extent on flow behavior of reacting gases and the particle dynamics. The present study investigates the influence of various operating parameters on the performance of a dual-stage thermal spray gun. The objective is to develop a predictive understanding of various parameters. The gas flow field and the free jet are modeled by considering the conservation of mass, momentum, and energy with the turbulence and the equilibrium combustion sub models. The particle phase is decoupled from the gas phase due to very low particle volume fractions. The results demonstrate the advantage of a dual-stage system over a single-stage system especially for the deposition of temperature sensitive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Empirical coefficient in eddy dissipation model

A p :

Particle cross-sectional area

B :

Empirical coefficient in eddy dissipation model

c :

Turbulent model constant

C D :

Drag coefficient

C p :

Specific heat at constant pressure

d p :

Particle diameter

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{F} \) :

External force

h c :

Convective heat transfer coefficient

H :

Overall enthalpy

k :

Turbulent kinetic energy

m p :

Mass of particle

Nu :

Nusselt number

p :

Gas pressure

P k :

Production rate of turbulent kinetic energy

P r :

Prandtl number

R :

Gas constant

R F :

Volumetric fuel consumption rate

Re :

Reynolds number

S :

Source term

t :

Time

T :

Temperature

u i :

Velocity in the i-direction

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{U} \) :

Instantaneous gas velocity vector

x i :

Spatial coordinate in the i-direction

Y :

Fluctuating dilation in compressible turbulence to the overall dissipation rate

α:

Inverse effective Prandtl number

ε:

Rate of turbulent kinetic energy dissipation

λ:

Thermal conductivity

µ:

Molecular viscosity

µeff :

Effective viscosity

Γ k :

Diffusion coefficient of k

Γε :

Diffusion coefficient of ε

ρ:

Density

σ:

Turbulent model constant

F:

Fuel

g:

Gas

O:

Oxidant

p:

Particle

P:

Combustion product

t:

Turbulent

References

  1. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng., 1996, 213, p 103-114

    Article  Google Scholar 

  2. H. Tabbara, S. Gu, and D.G. McCartney, Computational Modeling of Titanium Particles in Warm Spray, Comput. Fluids, 2011, 44, p 358-368

    Article  Google Scholar 

  3. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008

    Book  Google Scholar 

  4. D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer, Berlin, 2001

    Book  Google Scholar 

  5. M.J. Donachie, Jr., Titanium: A Technical Guide, 2nd ed., ASM International, Materials Park, 2000

    Google Scholar 

  6. O.E.M. Pohler, Unalloyed Titanium for Implants in Bone Surgery, Injury, 2000, 31, p 7-13

    Article  Google Scholar 

  7. C. Ponticaud, A. Grimaud, A. Denoirjean, P. Lefort, and P. Fauchais, Thermal Spray 2001 New Surfaces for a New Millennium: Proceedings of the International Thermal Spray Conferences, 2001, Singapore.

  8. T. Wu, S. Kuroda, J. Kawakitam, H. Katanoda, and R. Reed, Processing and Properties of Titanium Produced by Warm Spraying, Proceedings of the 2006 International Thermal Spray Conference, 2006, Seattle, Washington, USA.

  9. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2007

    Google Scholar 

  10. J. Browning, Thermal Spray Method and Apparatus for Optimizing Flame Jet Temperature, US patent 5, 330, 798, 1992

  11. J. Kawakita, S. Kuroda, S. Krebs, and H. Katanoda, In-Situ Densification of Ti Coatings by the Warm Spray (Two-Stage HVOF), Process Mater. Trans., 2006, 47, p 1631-1637

    Article  Google Scholar 

  12. J. Kawakita, S. Kuroda, T. Fukushima, H. Katanoda, K. Matsuo, and H. Fukanuma, Dense Titanium Coatings by Modified HVOF Spraying, Surf. Coat. Technol., 2006, 201, p 1250-1255

    Article  Google Scholar 

  13. J. Kawakita, H. Katanoda, M. Watanabe, K. Yokoyama, and S. Kuroda, Warm Spraying: An Improved Spray Process to Deposit Novel Coatings, Surf. Coat. Technol., 2008, 202, p 4369-4373

    Article  Google Scholar 

  14. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater., 2008, 9, p 1-17

    Google Scholar 

  15. T. Shamim, C. Xia, and P. Mohanty, Modeling and Analysis of Combustion Assisted Thermal Spray Processes, Int. J. Therm. Sci., 2007, 46, p 755-767

    Article  Google Scholar 

  16. D. Cheng, Q. Xu, G. Tapaga, and E. Lavernia, A Numerical Study of High-Velocity Oxygen Fuel Thermal Spraying Process. Part I: Gas Phase Dynamics, Metall. Mater. Trans. A, 2001, 32, p 1609-1620

    Article  Google Scholar 

  17. S. Gu, C. Eastwick, K. Simmons, and D. McCartney, Computational Fluid Dynamic Modeling of Gas Flow Characteristics in a High-Velocity Oxy-Fuel Thermal Spray System, J. Therm. Spray Technol., 2001, 10, p 461-469

    Article  Google Scholar 

  18. S. Kamnis and S. Gu, 3-D Modeling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61, p 5427-5439

    Article  Google Scholar 

  19. H. Katanoda, T. Kiriaki, T. Tachibanaki, J. Kawakita, S. Kuroda, and M. Fukuhara, Mathematical Modeling and Experimental Validation of the Warm Spray (Two-Stage HVOF) Process, J. Therm. Spray Technol., 2009, 18, p 401-410

    Article  Google Scholar 

  20. H. Katanoda, H. Morita, M. Komatsu, and S. Kuroda, Experimental and Numerical Evaluation of the Performance of Supersonic Two-Stage High-Velocity Oxy-Fuel Thermal Spray (Warm Spray) Gun, J. Therm. Sci., 2011, 20, p 88-92

    Article  Google Scholar 

  21. A. Dolatabadi, J. Mostaghimi, and V. Pershin, Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel (HVOF) Spray Process, J. Mater. Process. Technol., 2003, 137, p 214-224

    Article  Google Scholar 

  22. M. Li and P.D. Christofides, Multi-scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60, p 3649-3669

    Article  Google Scholar 

  23. D. Cheng, Q. Xu, E. Lavernia, and G. Tapaga, The Effect of Particle Size and Morphology on the In-Flight Behavior of Particles During High Velocity Oxy-Fuel Thermal Spraying, Metall. Mater. Trans. B, 2001, 32, p 525-535

    Article  Google Scholar 

  24. W.E. Ranz and W.R. Marshall, Evaporation from Drops (Part I), Chem. Eng. Prog., 1952, 48, p 141-180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Shamim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Shamim, T. Effect of Operating Parameters on a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System. J Therm Spray Tech 23, 910–918 (2014). https://doi.org/10.1007/s11666-014-0114-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0114-1

Keywords

Navigation