Skip to main content
Log in

Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The primary function of thermal barrier coatings (TBCs) is to insulate the underlying metal from high temperature gases in gas turbine engines. As a consequence, low thermal conductivity and high durability are the primary properties of interest. In this work, the solution precursor plasma spray (SPPS) process was used to create layered porosity, called inter-pass boundaries, in yttria-stabilized zirconia (YSZ) TBCs. IPBs have been shown to be effective in reducing thermal conductivity. Optimization of the IPB microstructure by the SPPS process produced YSZ TBCs with a thermal conductivity of 0.6 W/mK, an approximately 50% reduction compared to standard air plasma sprayed (APS) coatings. In preliminary tests, SPPS YSZ with IPBs exhibited equal or greater furnace thermal cycles and erosion resistance compared to regular SPPS and commercially made APS YSZ TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity, W/mK

α:

Thermal diffusivity, m2/s

c p :

Specific heat, J/gK

ρ:

Density, kg/m3

TBC:

Thermal barrier coatings

SPPS:

Solution precursor plasma spray

IPB:

Inter-pass boundaries

Y(F/P)SZ:

Yttria(-fully/partially)-stabilized zirconia

APS:

Air plasma spray

FOD:

Foreign object damage

OEM:

Original equipment manufacturer

HVOF:

High velocity oxygen fuel

LPPS:

Low pressure plasma spray

SEM:

Scanning electron microscope

FEA:

Finite element analysis

EB-PVD:

Electron beam physical vapor deposition

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. A. Maricocch, A. Bartz, and D. Wortman, PVD TBC Experience on GE Aircraft Engines, J. Therm. Spray Technol., 1997, 6(2), p 193-198

    Article  Google Scholar 

  3. C.H. Liebert and S. Stecura, Ceramic Thermal Protective Coating Withstands Hostile Environment of Rotating Turbine Blades, NASA Tech Briefs, NASA-LeRC, Cleveland, OH, 1975

    Google Scholar 

  4. S.J. Grisaffe, S.R. Levine, and J.S. Clark, Thermal Barrier Coatings, National Aeronautics and Space Adminstration, NASA-LeRC, Cleveland, OH, 1978

    Google Scholar 

  5. C.H. Liebert and R.A. Miller, Ceramic Thermal Barrier Coatings, Ind. Eng. Chem. Prod. Res. Dev., 1984, 23(3), p 344-349

    Article  Google Scholar 

  6. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  7. R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028

    Article  Google Scholar 

  8. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33(1), p 383-417

    Article  Google Scholar 

  9. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stöver, Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System, J. Am. Ceram. Soc., 2003, 86(8), p 1338-1344

    Article  Google Scholar 

  10. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91

    Article  Google Scholar 

  11. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J.E. Doring, and R. Vassen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 76-83

    Article  Google Scholar 

  12. A.G. Evans and C.G. Levi, Enhanced Zirconia Thermal Barrier Coating Systems, Proc. Inst. Mech. Eng. A, 2006, 220(1), p 85-92

    Article  Google Scholar 

  13. X. Ma, F. Wu, J. Roth, M. Gell, and E.H. Jordan, Low Thermal Conductivity Thermal Barrier Coating Deposited by the Solution Plasma Spray Process, Surf. Coat. Technol., 2006, 201(7), p 4447-4452

    Article  Google Scholar 

  14. W. Ma, M.O. Jarligo, D.E. Mack, D. Pitzer, J. Malzbender, R. Vassen, and D. Stöver, New Generation Perovskite Thermal Barrier Coating Materials, J. Therm. Spray Technol., 2008, 17(5), p 831-837

    Article  Google Scholar 

  15. W. Ma, D. Mack, J. Malzbender, R. Vassen, and D. Stöver, Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2008, 28(16), p 3071-3081

    Article  Google Scholar 

  16. W. Ma, D.E. Mack, R. Vassen, and D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2630-2635

    Article  Google Scholar 

  17. R. Vassen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186

    Article  Google Scholar 

  18. R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  19. J.A. Krogstad, M. Lepple, and C.G. Levi, Opportunities for Improved TBC Durability in the CeO2-TiO2-ZrO2 System, Surf. Coat. Technol., 2013, 221(4), p 44-52

    Article  Google Scholar 

  20. C.G. Levi, J.W. Hutchinson, M.H. Vidal-Sefif, and C.A. Johnson, Environmental Degradation of Thermal Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941

    Article  Google Scholar 

  21. A.D. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution Precursor Plasma Spray, J. Mater. Sci. Eng. A, 2005, 405(1), p 313-320

    Article  Google Scholar 

  22. A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Jr., Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349

    Article  Google Scholar 

  23. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  Google Scholar 

  24. R.E. Taylor, Thermal Conductivity Determination of Thermal Barrier Coatings, J. Mater. Sci. Eng. A, 1998, 245(2), p 160-167

    Article  Google Scholar 

  25. B. Borawski, J. Singh, J.A. Todd, and D.E. Wolfe, Multi-layer Coating Design Architecture for Optimum Particulate Erosion Resistance, Wear, 2011, 271(11), p 2782-2792

    Article  Google Scholar 

  26. D.E. Wolfe, B.M. Gabriel, and M.W. Reedy, Nanolayer (Ti,Cr)N Coatings for Hard Particle Erosion Resistance, Surf. Coat. Technol., 2011, 205(19), p 4569-4576

    Article  Google Scholar 

  27. F. Wu, E.H. Jordan, X. Ma, and M. Gell, Thermally Grown Oxide Growth Behavior and Spallation Lives of Solution Precursor Plasma Spray Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(9), p 1628-1635

    Article  Google Scholar 

  28. J.R. Davis, Environmental Stability-Bond Coat Oxidation, Handbook of Thermal Spray Technology, Thermal Spray Society and ASM International, 2004, p 270

  29. C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802-816

    Article  Google Scholar 

  30. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138

    Article  Google Scholar 

  31. R. Rampon, O. Marchand, C. Filiatre, and G. Bertrand, Influence of Suspension Characteristics on Coatings Microstructure Obtained by Suspension Plasma Spray, Surf. Coat. Technol., 2008, 202(18), p 4337-4342

    Article  Google Scholar 

  32. S.A. Langer, E.R. Fuller, Jr., and W.C. Carter, OOF: An Image-Based Finite-Element Analysis of Material Microstructures, Comput. Sci. Eng., 2001, 3(3), p 15-23

    Article  Google Scholar 

  33. A. Ozturk and B.M. Cetegen, Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets, J. Mater. Sci. Eng. A, 2004, 384(1), p 331-351

    Article  Google Scholar 

  34. M.P. Bacos, J.M. Doraux, S. Landais, O. Lavigne, R. Mevrel, M. Poulain, C. Rio, and M.-H. Vidal-Setif, 10-Year-Activities at Onera on Advanced Thermal Barrier Coatings, Aerosp. Lab J., 2011, AL03-04(3), p 1-14

    Google Scholar 

Download references

Acknowledgments

This research is supported by the US Department of Energy, National Energy Technology Lab through the University Turbine Systems Research (UTSR) program award DE-FE-0007382. Special thanks to NETSZCH Instruments for doing parallel measurements to validate our laser-flash system. The authors would also like to thank Prof. Douglas Wolfe at Penn State University for the erosion testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, E.H., Jiang, C., Roth, J. et al. Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process. J Therm Spray Tech 23, 849–859 (2014). https://doi.org/10.1007/s11666-014-0082-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0082-5

Keywords

Navigation