Skip to main content
Log in

Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Hot dip galvanizing has been extensively employed for corrosion protection of steel structures. However, during the process of galvanization, the corrosion in molten zinc brings many problems to galvanization industry. In this study, as a material of corrosion resistance to molten zinc intended for application in Hot-dip galvanization, HVOF Ti28.15Al63.4Nb8.25Y (at.%) coatings with different bond coats (NiCr5Al, NiCoCrAlY, CoCrAlYTaSi, and NiCr80/20) were deposited onto 316L stainless steel substrate, respectively. The influences of different bond coats on HVOF Ti28.15Al63.4Nb8.25Y coatings were investigated. The results showed that bond coat had an obvious influence on improving the mechanical properties of HVOF Ti28.15Al63.4Nb8.25Y coatings. HVOF Ti28.15Al63.4Nb8.25Y coatings with NiCoCrAlY bond coat displayed the best mechanical properties. However, bond coats had no obvious effects on the microstructure, porosity, and hardness of HVOF Ti28.15Al63.4Nb8.25Y top coatings. The effects of as-received powder morphology and grain size on the characteristics of coatings were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.M.A. Shibli, R. Manu, and S. Beegum, Studies on the Influence of Metal Oxides on the Galvanic Characteristics of Hot-Dip Zinc Coating, Surf. Coat. Technol., 2008, 202, p 1733-1737

    Article  CAS  Google Scholar 

  2. S.K. Chuchmarev, V.I. Pokhmurskii, Yu.A. Raevskii, Yu.G. Dmitriev, and O.Ya Lizun, Kinetics of Solution of Iron in Molten Zinc, J. Mater. Sci., 1985, 21, p 411-413

    Google Scholar 

  3. S.M.A. Shibli and R. Manu, Improvement of Hot-Dip Zinc Coating by Enriching the Inner Layers with Iron Oxide, Appl. Surf. Sci., 2006, 252, p 3058-3064

    Article  CAS  Google Scholar 

  4. S.M.A. Shibli, R. Manu, and V.S. Dilimon, Effect of Nickel-Rich Barrier Layer on Improvement of Hot-Dip Zinc Coating, Appl. Surf. Sci., 2005, 245, p 179-185

    Article  CAS  Google Scholar 

  5. Z.A. Hamid, A.A. Aal, H.B. Hassan, and A. Shaaban, Process and Performance of Hot Dip Zinc Coatings Containing ZnO and Ni-P Under Layers as Barrier Protection, Appl. Surf. Sci., 2010, 256, p 4166-4170

    Article  Google Scholar 

  6. Y.C. Dong, D.R. Yan, J.N. He, J.X. Zhang, and X.Z. Li, Degradation Behaviour of ZrO2-Ni/Al Gradient Coatings in Molten Zn, Surf. Coat. Technol., 2006, 201, p 2455-2459

    Article  CAS  Google Scholar 

  7. W.J. Wang, J.P. Lin, Y.L. Wang, Y. Zhang, and G.L. Chen, Isothermal Corrosion TiAl-Nb Alloy in Liquid Zinc, Mater. Sci. Eng. A, 2007, 452, p 194-201

    Article  Google Scholar 

  8. A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, and G. Rizzi, A Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma Spray, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy, J. Therm. Spray Technol., 2003, 12, p 504-507

    Article  CAS  Google Scholar 

  9. H. Waki, T. Kitamura, and A. Kobayashi, Effect of Thermal Treatment on High-Temperature Mechanical Properties Enhancement in LPPS, HVOF, and APS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18, p 500-509

    Article  CAS  Google Scholar 

  10. F.-L. Toma, C.C. Stahr, L.-M. Berger, S. Saaro, M. Hermann, D. Deska, and G. Michael, Corrosion Resistance of APS- and HVOF Sprayed Coatings in the Al2O3-TiO2 System, J. Therm. Spray Technol., 2010, 19, p 137-147

    Article  CAS  Google Scholar 

  11. M.P. Planche, H. Liao, B. Normand, and C. Coddet, Relationships Between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes, Surf. Coat. Technol., 2005, 200, p 2465-2473

    Article  CAS  Google Scholar 

  12. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and Its Role in Microstructural Evolution of Metallic Thermal Spray Coatings—Case Study for Ni-Al, Surf. Coat. Technol., 2006, 200, p 5395-5406

    Article  CAS  Google Scholar 

  13. S. Sharma, Erosive Wear Study of Rare Earth-Modified HVOF-Sprayed Coatings Using Design of Experiment, J. Therm. Spray Technol., 2012, 21, p 49-62

    Article  CAS  Google Scholar 

  14. B.G. Seong, S.Y. Hwang, M.C. Kim, and K.Y. Kim, Reaction of WC-Co Coating with Molten Zinc in a Zinc Pot of a Continuous Galvanizing Line, Surf. Coat. Technol., 2001, 138, p 101-110

    Article  CAS  Google Scholar 

  15. H. Mizuno and J. Kitamura, MoB/CoCr Cermet Coatings by HVOF Spraying against Erosion by Molten Al-Zn Alloy, J. Therm. Spray Technol., 2007, 16, p 404-413

    Article  CAS  Google Scholar 

  16. B.G. Seong, S.Y. Hwang, M.C. Kim, K.Y. Kim, Observation on the WC-Co Coating Used in a Zinc Pot of a Continuous Galvanizing Line, Thermal Spray: Surface Engineering Via Applied Research, C.C. Berndt, Ed., May 8-11, 2000 (Canada), ASM International, Materials Park, OH, USA, 2000, p 1159-1167

  17. W.J. Wang, J.P. Lin, Y.L. Wang, and G.L. Chen, The Corrosion of Intermetallic Alloys in Liquid Zinc, J. Alloys Compd., 2007, 428, p 237-243

    Article  CAS  Google Scholar 

  18. J.-Y. Kwon, J.-H. Lee, H.-C. Kim, Y.-G. Jung, U. Paik, and K.-S. Lee, Effect of Thermal Fatigue on Mechanical Characteristics and Contact Damage of Zirconia-Based Thermal Barrier Coatings with HVOF-Sprayed Bond Coat, Mater. Sci. Eng. A, 2006, 429, p 173-180

    Article  Google Scholar 

  19. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4, p 255-265

    Article  CAS  Google Scholar 

  20. A. Fossati, M. DiFerdinando, U. Bardi, A. Scrivani, and C. Giolli, Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings, J. Therm. Spray Technol., 2012, 21, p 314-324

    Article  CAS  Google Scholar 

  21. A. Atkinson, A. Selcuk, and S.J. Webb, Variability of Stress in Alumina Corrosion Layers Formed in Thermal-Barrier Coatings, Oxid. Met., 2000, 54, p 371-384

    Article  CAS  Google Scholar 

  22. B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, and K.B. Alexander, Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion, Mater. Sci. Eng. A, 1998, 245, p 201-211

    Article  Google Scholar 

  23. H.P. Lu, P.L. Nie, Y.G. Yan, J. Wang, and B.D. Sun, Microstructure and Interfacial Adhesion of High Velocity Oxy-Fuel-Sprayed MoB-CoCr Alloy Coating on 316L Stainless Steel, Surf. Interface Anal., 2009, 41, p 725-729

    Article  Google Scholar 

  24. S. Matthews and B. James, Review of Thermal Spray Coating Applications in the Steel Industry: Part 2—Zinc Pot Hardware in the Continuous Galvanizing Line, J. Therm. Spray Technol., 2010, 19, p 1277-1286

    Article  CAS  Google Scholar 

  25. J.P. Lin, W.J. Wang, Y.L. Wang, Y. Zhang, Z. Lin, G.L. Chen, An Intermetallic Compound-TiAlNb of Corrosion Resistance to Molten Zinc, China Patent, Publication Number CHN 10011237. 5, Beijing University of Technology, 2006 (in Chinese)

  26. P.F. Sun, L.Q. Zhang, L. Zhang, and J.P. Lin, Improvement in the Liquid Zinc Corrosion Resistance of High Nb-TiAl Alloys by Pre-oxidation in a SiO2-Powder Pack, Sci. China E, 2012, 55, p 505-509

    Article  CAS  Google Scholar 

  27. H.J. Zeng, L.Q. Zhang, J.P. Lin, S.J. Zhang, and G.L. Chen, TiAlNb Intermetallic Compound Coating Prepared by High Velocity Oxy-Fuel Spraying, Surf. Coat. Technol., 2011, 206, p 178-184

    Article  CAS  Google Scholar 

  28. “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings,” C 633-01, Annual Book of ASTM Standards, ASTM, 2001, 3, p 1-7

  29. X.G. Sun, S.F. Chen, Y. Wang, Z.Y. Pan, L. Wang, Mechanical Properties and Thermal Shock Resistance of HVOF Sprayed NiCrAlY Coatings Without and With Nano Ceria, J. Therm. Spray Technol., 2012, 21, p 818-824

    Google Scholar 

  30. P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF, and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204, p 3962-3974

    Article  CAS  Google Scholar 

  31. K. Fritscher, Eutectic Structures in the Ni-Co-Cr-Al System Obtained by Plasma Spraying and by Bridgman Growth, Cryst. Growth, 2003, 250, p 546-557

    Article  CAS  Google Scholar 

  32. H.D. Steffens, B. Wielage, and J. Drozak, Interface Phenomena and Bonding Mechanism of Thermally-Sprayed Metal and Ceramic Composites, Surf. Coat. Technol., 1991, 45, p 299-308

    Article  CAS  Google Scholar 

  33. S. Kamnis and S. Gu, Study of In-Flight and Impact Dynamic of Nonspherical Particles from HVOF Guns, J. Therm Spay. Technol., 2010, 19, p 31-41

    Article  CAS  Google Scholar 

  34. R.A. Mahesh, R. Jayaganthan, and S. Prakash, Microstructural Characterization and Hardness Evaluation of HVOF Sprayed Ni-5Al Coatings on Ni- and Fe-Based Superalloys, J. Mater. Process. Technol., 2009, 209, p 3501-3510

    Article  CAS  Google Scholar 

  35. B.S. Sidhu, D. Puri, and S. Prakash, Mechanical and Metallurgical Properties of Plasma Sprayed and Laser Remelted Ni-20Cr and Stellite-6 Coatings, J. Mater. Process. Technol., 2005, 159, p 347-355

    Article  CAS  Google Scholar 

  36. H.S. Sidhu, B.S. Sidhu, and S. Prakash, Mechanical and Microstructural Properties of HVOF Sprayed WC-Co and Cr3C2-NiCr Coatings on the Boiler Tube Steels Using LPG as the Fuel Gas, J. Mater. Process. Technol., 2006, 171, p 77-82

    Article  CAS  Google Scholar 

  37. F.F. Khan, G. Bae, K. Kang, N. Hyuntaek, J. Kim, T. Jeong, and C. Lee, Evaluation of Die-Soldering and Erosion Resistance of High Velocity Oxy-Fuel Sprayed MoB-Based Cermet Coatings, J. Therm. Spray Technol., 2011, 20, p 1022-1034

    Article  CAS  Google Scholar 

  38. Y.R. Niu, D.Y. Hu, H. Ji, L.P. Huang, and X.B. Zheng, Effect of Bond Coatings on Properties of Vacuum Plasma Sprayed Tungsten Coatings on Copper Alloy Substrate, Fusion Eng. Des., 2011, 86, p 307-311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support received from the National Key Basic Research Program of China (973 Program, No. 2011CB605502, the National Natural Science Foundation of China under Contract No. 50871127 and the State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, under contract No. 2008Z-05, as well as D.W. An for his assistance with the thermal spraying equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H.J., Zhang, L.Q., Lin, J.P. et al. Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings. J Therm Spray Tech 21, 1245–1256 (2012). https://doi.org/10.1007/s11666-012-9825-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9825-3

Keywords

Navigation