Skip to main content
Log in

Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, and S. Takaki, Effect of the Martensite Distribution on the Strain Hardening and Ductile Fracture Behaviors in Dual-Phase Steel, Mater. Sci. Eng. A, 2014, 604, p 135–141

    Article  Google Scholar 

  2. A.G. Kalashami, A. Kermanpur, A. Najafizadeh, and Y. Mazaheri, Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel, J. Mater. Eng. Perform., 2015, 24, p 3008–3017

    Article  Google Scholar 

  3. Y. Cao, B. Karlsson, and J. Ahlström, Temperature and Strain Rate Effects on the Mechanical Behavior of Dual Phase Steel, Mater. Sci. Eng. A, 2015, 636, p 124–132

    Article  Google Scholar 

  4. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar, Deformation Response of Ferrite and Martensite in a Dual-Phase Steel, Acta Mater., 2014, 62, p 197–211

    Article  Google Scholar 

  5. W. Wangn and X. Wei, The Effect of Martensite Volume and Distribution on Shear Fracture Propagation of 600–1000 MPa Dual Phase Sheet Steels in the Process of Deep Drawing, Int. J. Mech. Sci., 2013, 67, p 100–107

    Article  Google Scholar 

  6. S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I.V. Riemsdijk, and R. Mayer, Strain Rate and Temperature Effects on the Formability and Damage of Advanced High-Strength Steels, Metall. Mater. Trans. A, 2008, 39, p 1350–1358

    Article  Google Scholar 

  7. Y. Liu, D. Dong, L. Wang, X. Chu, P. Wang, and M. Jin, Strain Rate Dependent Deformation and Failure Behavior of Laser Welded DP780 Steel Joint Under Dynamic Tensile Loading, Mater. Sci. Eng. A, 2015, 627, p 296–305

    Article  Google Scholar 

  8. V.H.B. Hernandez, S.K. Panda, M.L. Kuntz, and Y. Zhou, Nanoindentation and Microstructure Analysis of Resistance Spot Welded Dual Phase Steel, Mater. Lett., 2010, 64, p 207–210

    Article  Google Scholar 

  9. B. Wang, L. Hua, X. Wang, Y. Song, and Y. Liu, Effects of Electrode Tip Morphology on Resistance Spot Welding Quality of DP590 Dual-Phase Steel, Int. J. Adv. Manuf. Technol., 2016, 83, p 1917–1926

    Article  Google Scholar 

  10. C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, and E. Biro, Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel, Mater. Sci. Eng. A, 2008, 485, p 334–346

    Article  Google Scholar 

  11. D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675

    Article  Google Scholar 

  12. N. Farabi, D.L. Chen, and Y. Zhou, Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2012, 21, p 222–230

    Article  Google Scholar 

  13. S.K. Panda, M.L. Kuntz, and Y. Zhou, Finite Element Analysis of Effects of Soft Zones on Formability of Laser Welded Advanced High Strength Steels, Sci. Technol. Weld. Join., 2009, 14, p 52–61

    Article  Google Scholar 

  14. A. Ravisankar, S.K. Velaga, G. Rajput, and S. Venugopal, Influence of Welding Speed and Power On Residual Stress During Gas Tungsten Arc Welding (GTAW) of Thin Sections with Constant Heat Input: A Study Using Numerical Simulation and Experimental Validation, J. Manuf. Process., 2014, 16, p 200–211

    Article  Google Scholar 

  15. Z. Yang, B. Qi, B. Cong, F. Liu, and M. Yang, Microstructure, Tensile Properties of Ti-6Al-4V by Ultra High Pulse Frequency GTAW with Low Duty Cycle, J. Mater. Process. Technol., 2015, 216, p 37–47

    Article  Google Scholar 

  16. J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565

    Article  Google Scholar 

  17. A. Tiziani, P. Ferro, R. Cervo, and M. Durante, Effects of Different Welding Technologies on Metallurgical and Mechanical Properties of DP600 Steel Welded Joints, La Metall. Ital., 2011, 1, p 27–34

    Google Scholar 

  18. P.K. Giridharan and N. Murugan, Optimization of Pulsed GTA Welding Process Parameters for the Welding of AISI, 304L Stainless Steel Sheets, Int. J. Adv. Manuf. Technol., 2009, 40, p 478–489

    Article  Google Scholar 

  19. ASTM E562, Determining Volume Fraction by Systematic Manual Point Count, Annual Book of ASTM Standards, American Society for Testing and Materials, 2004

  20. S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003

    Google Scholar 

  21. M. Xia, E. Biro, Z. Tian, and Y.N. Zhou, Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels, ISIJ Int., 2008, 48, p 809–814

    Article  Google Scholar 

  22. E. Bayraktar, D. Kaplan, L. Devillers, and J.P. Chevalier, Grain Growth Mechanism During the Welding of Interstitial Free (IF) Steels, J. Mater. Process. Technol., 2007, 189, p 114–125

    Article  Google Scholar 

  23. W. Guo, D. Crowther, J.A. Francis, A. Thompson, Z. Liuc, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548

    Google Scholar 

  24. Z.G. Yang and H.S. Fang, An Overview on Bainite Formation in Steels, Curr. Opin. Solid State Mater. Sci., 2005, 9, p 277–286

    Article  Google Scholar 

  25. G.K. Ahiale, Y.J. Oh, W.D. Choi, K.B. Lee, J.G. Jung, and S.W. Nam, Microstructure and Fatigue Resistance of High Strength Dual Phase Steel Welded with Gas Metal arc Welding and Plasma Arc Welding Processes, Met. Mater. Int., 2013, 19, p 933–939

    Article  Google Scholar 

  26. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size, Metall. Mater. Trans. A, 2012, 43, p 3850–3869

    Article  Google Scholar 

  27. D. Dong, Y. Liu, Y. Yang, J. Li, M. Ma, and T. Jiang, Microstructure and Dynamic Tensile Behavior of DP600 Dual Phase Steel Joint by Laser Welding, Mater. Sci. Eng. A, 2014, 594, p 17–25

    Article  Google Scholar 

  28. V.H.B. Hernandez, S.K. Panda, Y. Okita, and N.Y. Zhou, A Study on Heat Affected Zone Softening in Resistance Spot Welded Dual Phase Steel by Nanoindentation, J. Mater. Sci., 2010, 45, p 1638–1647

    Article  Google Scholar 

  29. Z. Sami, S. Tahar, and H. Mohamed, Microstructure and Charpy Impact Properties of Ferrite-Martensite Dual Phase API, X70 Linepipe Steel, Mater. Sci. Eng. A, 2014, 598, p 338–342

    Article  Google Scholar 

  30. W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, and Y. Zhou, Tensile and Fatigue Properties of Fiber Laser Welded High Strength Low Alloy and DP980 Dual-Phase Steel Joints, Mater. Des., 2013, 43, p 373–383

    Article  Google Scholar 

  31. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48, p 171–273

    Article  Google Scholar 

  32. G. Sainath, B.K. Choudhary, J. Christopher, E.I. Samuel, and M.D. Mathew, Applicability of Voce Equation for Tensile Flow and Work Hardening Behaviour of P92 Ferritic Steel, Int. J. Press. Ves. Pip., 2015, 132–133, p 1–9

    Article  Google Scholar 

  33. E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain, Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel, J. Mater. Eng. Perform., 2012, 21, p 382–387

    Article  Google Scholar 

  34. C.R. Brooks, Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels, ASM International, OH, 1996

    Google Scholar 

  35. Q. Jia, W. Guo, P. Peng, M. Li, Y. Zhu, and G. Zou, Microstructure- and Strain Rate-Dependent Tensile Behavior of fiber Laser-Welded DP980 Steel Joint, J. Mater. Eng. Perform., 2016, 25, p 668–676

    Article  Google Scholar 

  36. J.H. Hollomon, Tensile Deformation, Am. Inst. Min. Metall. Eng. Trans. Iron Steel Div., 1945, 162, p 268–289

    Google Scholar 

  37. P. Ludwik, Elements of Technical Mechanics, Springer, Berlin, 1909

    Google Scholar 

  38. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite-Martensite Dual Phase Steel Sheets, Mater. Sci. Eng. A, 2009, 518, p 1–6

    Article  Google Scholar 

  39. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, and N. Saeidi, Effects of Initial Microstructure and Thermomechanical Processing parameters on Microstructures and Mechanical Properties of Ultrafine Grained Dual Phase Steels, Mater. Sci. Eng. A, 2014, 612, p 54–62

    Article  Google Scholar 

  40. J. Kadkhodapour, A. Butz, and S.Z. Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59, p 2575–2588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashrafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, H., Shamanian, M., Emadi, R. et al. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels. J. of Materi Eng and Perform 26, 1414–1423 (2017). https://doi.org/10.1007/s11665-017-2544-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2544-7

Keywords

Navigation