Skip to main content
Log in

Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. De Damborenea, Surface Modification of Metals by High Power Lasers, Surf. Coat. Technol., 1998, 100, p 377–382

    Article  Google Scholar 

  2. T.P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, Tribological Behavior of Homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 Multilayer Coatings, Surf. Coat. Technol., 1996, 86, p 231–236

    Article  Google Scholar 

  3. M.R. Baldan, S.C. Ramos, E.C. Almeida, A.F. Azevedo, and N.G. Ferreira, Homogeneous Micro and Nanocrystalline Diamond Coating on Reticulated Vitreous Carbon Treated at Different Temperatures, Diam. Relat. Mater., 2008, 17(7–10), p 1110–1115

    Article  Google Scholar 

  4. J.H. Kim, J.D. Kim, H.M. Park, S.B. Lee, J.W. Yi, and S.I. Jung, A Homogeneous Ni-P Coating with a Unique Scalelike Structure Deposited on VGCNFs by an Electroless Deposition Method, Appl. Surf. Sci., 2013, 265, p 527–531

    Article  Google Scholar 

  5. M.H. Yu, B. Zhou, D.B. Bi, and D. Shaw, Preparation of Graded Multilayer Materials and Evaluation of Residual Stresses, Mater. Des., 2010, 31(5), p 2478–2482

    Article  Google Scholar 

  6. G.G. Wang, H.Y. Zhang, W.Y. Li, F.X. Yang, L. Cui, H.B. Zuo, and J.C. Han, The Preparation and Evaluation of Graded Multilayer Ta-C Films Deposited by FCVA Method, Appl. Surf. Sci., 2011, 257(11), p 5064–5069

    Article  Google Scholar 

  7. L. Qin, K.K. Yang, C.S. Liu, and B. Tang, Enhanced Plasma Boriding with Molybdenum Using Double Glow Plasma Surface Alloying Technique, Mater. Lett., 2012, 82, p 127–129

    Article  Google Scholar 

  8. Y. Ma, Y. Zhang, X.H. Yao, X.Y. Zhang, X.F. Shu, and B. Tang, Characterization of Mo Surface Modified Ti by Indentation Techniques, Surf. Coat. Technol., 2013, 226, p 75–81

    Article  Google Scholar 

  9. R. Dumpala, B. Ramamoorthy, and M.S. Rao, Graded Composite Diamond Coatings with Top-Layer Nanocrystallinity and Interfacial Integrity: Cross-Sectional Raman Mapping, Appl. Surf. Sci., 2014, 289, p 545–550

    Article  Google Scholar 

  10. K. Tunvisut, N.P. O’Dowd, and E.P. Busso, Use of Scaling Functions to Determine Mechanical Properties of Thin Coatings from Microindentation Tests, Int. J. Solids Struct., 2001, 38(2), p 335–351

    Article  Google Scholar 

  11. J.L. Bucaille, S. Stauss, P. Schwaller, and J. Michler, A New Technique to Determine the Elastoplastic Properties of Thin Metallic Films Using Sharp Indenters, Thin Solid Films, 2004, 447, p 239–245

    Article  Google Scholar 

  12. M.H. Zhao, X. Chen, Y. Xiang, J.J. Vlassak, D. Lee, N. Ogasawara, N. Chiba, and Y.X. Gan, Measuring Elastoplastic Properties of Thin Films on an Elastic Substrate Using Sharp Indentation, Acta Mater., 2007, 55(18), p 6260–6274

    Article  Google Scholar 

  13. M.H. Zhao, Y. Xiang, J. Xu, N. Ogasawara, N. Chiba, and X. Chen, Determining Mechanical Properties of Thin Films from the Loading Curve of Nanoindentation Testing, Thin Solid Films, 2008, 516(21), p 7571–7580

    Article  Google Scholar 

  14. Y.G. Liao, Y.C. Zhou, Y.L. Huang, and L.M. Jiang, Measuring Elastic-Plastic Properties of Thin Films on Elastic-Plastic Substrates by Sharp Indentation, Mech. Mater., 2009, 41(3), p 308–318

    Article  Google Scholar 

  15. J.H. Lee, D. Lim, H. Hyun, and H. Lee, A Numerical Approach to Indentation Technique to Evaluate Material Properties of Film-on-Substrate Systems, Int. J. Solids Struct., 2012, 49(7), p 1033–1043

    Article  Google Scholar 

  16. K.J. Ma, A. Bloyce, and T. Bell, Examination of Mechanical Properties and Failure Mechanisms of TiN and Ti-TiN Multilayer Coatings, Surf. Coat. Technol., 1995, 76, p 297–302

    Article  Google Scholar 

  17. A. Karimi, Y. Wang, T. Cselle, and M. Morstein, Fracture Mechanisms in Nanoscale Layered Hard Thin Films, Thin Solid Films, 2002, 420, p 275–280

    Article  Google Scholar 

  18. L.A. Piana, E.A. Pérez, R.M. Souza, A.O. Kunrath, and T. Strohaecker, Numerical and Experimental Analyses on the Indentation of Coated Systems with Substrates with Different Mechanical Properties, Thin Solid Films, 2005, 491(1), p 197–203

    Article  Google Scholar 

  19. S. Kataria, S. Goyal, S. Dash, and A.K. Tyagi, Nanomechanical Characterization of Thermally Evaporated Cr Thin Films-FE Analysis of the Substrate Effect, Thin Solid Films, 2010, 519(1), p 312–318

    Article  Google Scholar 

  20. O. Knotek, B. Bosserhoff, A. Schrey, T. Leyendecker, O. Lemmer, and S. Esser, A New Technique for Testing the Impact Load of Thin Films: the Coating Impact Test, Surf. Coat. Technol., 1992, 54, p 102–107

    Article  Google Scholar 

  21. K.D. Bouzakis, N. Vidakis, T. Leyendecker, G. Erkens, and R. Wenke, Determination of the Fatigue Properties of Multilayer PVD Coatings on Various Substrates, Based on the Impact Test and its FEM Simulation, Thin Solid Films, 1997, 308, p 315–322

    Article  Google Scholar 

  22. A.E. Giannakopoulos and S. Suresh, Indentation of Solids with Gradients in Elastic Properties: Part I. Point Force, Int. J. Solids Struct., 1997, 34(19), p 2357–2392

    Article  Google Scholar 

  23. A.E. Giannakopoulos and S. Suresh, Indentation of Solids with Gradients in Elastic Properties: Part II. Axisymmetric Indentors, Int. J. Solids Struct., 1997, 34(19), p 2393–2428

    Article  Google Scholar 

  24. Y.P. Cao and J. Lu, A New Scheme for Computational Modeling of Conical Indentation in Plastically Graded Materials, J. Mater. Res., 2004, 19(6), p 1703–1716

    Article  Google Scholar 

  25. N.A. Branch, N.K. Arakere, G. Subhash, and M.A. Klecka, Determination of Constitutive Response of Plastically Graded Materials, Int. J. Plast., 2011, 27(5), p 728–738

    Article  Google Scholar 

  26. F.P. Yuan, P. Jiang, J.J. Xie, and X.L. Wu, Analysis of Spherical Indentation of Materials with Plastically Graded Surface Layer, Int. J. Solids Struct., 2012, 49(3), p 527–536

    Article  Google Scholar 

  27. Z.Q. Wang and T. Nakamura, Simulations of Crack Propagation in Elastic-Plastic Graded Materials, Mech. Mater., 2004, 36(7), p 601–622

    Article  Google Scholar 

  28. B. Tang, P.Q. Wu, X.Y. Li, A.L. Fan, Z. Xu, and J.P. Celis, Tribological Behavior of Plasma Mo-N Surface Modified Ti-6Al-4V Alloy, Surf. Coat. Technol., 2004, 179(2), p 333–339

    Article  Google Scholar 

  29. Z.X. Wang, Z.Y. He, Y.Q. Wang, X.P. Liu, and B. Tang, Microstructure and Tribological Behaviors of Ti6AlV Alloy Treated by Plasma Ni Alloying, Appl. Surf. Sci., 2011, 257(23), p 10267–10272

    Article  Google Scholar 

  30. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, 49(19), p 3899–3918

    Article  Google Scholar 

  31. N. Chollacoop, M. Dao, and S. Suresh, Depth-Sensing Instrumented Indentation with Dual Sharp Indenters, Acta Mater., 2003, 51(13), p 3713–3729

    Article  Google Scholar 

  32. M.H. Zhao, N. Ogasawara, N. Chiba, and X. Chen, A New Approach to Measure the Elastic-Plastic Properties of Bulk Materials Using Spherical Indentation, Acta Mater., 2006, 54(1), p 23–32

    Article  Google Scholar 

  33. S.D. Mesarovic and N.A. Fleck, Spherical Indentation of Elastic-Plastic Solids, Proc. R. Soc. Lond. A, 1999, 455, p 2707–2728

    Article  Google Scholar 

  34. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, T.A. Friedmann, J.W. Ager, III, O.R. Monteiro, and I.G. Brown, Finite-Element Modeling of Nanoindentation for Evaluating Mechanical Properties of MEMS Materials, Surf. Coat. Technol., 1998, 103–104, p 268–275

    Article  Google Scholar 

  35. A. Nayebi, R. El Abdi, O. Bartier, and G. Mauvoisin, New Procedure to Determine Steel Mechanical Parameters from the Spherical Indentation Technique, Mech. Mater., 2002, 34(4), p 243–254

    Article  Google Scholar 

  36. A.W. Warren and Y.B. Guo, Machined Surface Properties Determined by Nanoindentation: Experimental and FEA Studies on the Effects of Surface Integrity and Tip Geometry, Surf. Coat. Technol., 2006, 201(1–2), p 423–433

    Article  Google Scholar 

  37. H. Pelletier, J. Krier, and P. Mille, Characterization of Mechanical Properties of Thin Films Using Nanoindentation Test, Mech. Mater., 2006, 38(12), p 1182–1198

    Article  Google Scholar 

  38. Y.P. Cao and J. Lu, A New Method to Extract the Plastic Properties of Metal Materials from an Instrumented Spherical Indentation Loading Curve, Acta Mater., 2004, 52(13), p 4023–4032

    Article  Google Scholar 

  39. Y. Ma, Y. Zhang, H.F. Yu, X.Y. Zhang, X.F. Shu, and B. Tang, Plastic Characterization of Metals by Combining Nanoindentation Test and Finite Element Simulation, Trans. Nonferrous Met. Soc. China, 2013, 23(8), p 2368–2373

    Article  Google Scholar 

  40. J.M. Antunes, J.V. Fernandes, L.F. Menezes, and B.M. Chaparro, A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation, Acta Mater., 2007, 55(1), p 69–81

    Article  Google Scholar 

  41. A.A. Pelegri and X.Q. Huang, Nanoindentation on Soft Film/Hard Substrate and Hard Film/Soft Substrate Material Systems with Finite Element Analysis, Compos. Sci. Technol., 2008, 68(1), p 147–155

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51171125) and (31300808), the Natural Science Foundation of Shanxi Province, China (2012021021-7), and the Research Project Supported by Shanxi Scholarship Council of China (2011-038). The authors also acknowledge the suggestions of Professor Daoxin Liu of Northwestern Polytechnical University and Jacques Francoise, former CEO of CSM Instruments SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Qin, J., Zhang, X. et al. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis. J. of Materi Eng and Perform 24, 2678–2687 (2015). https://doi.org/10.1007/s11665-015-1556-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1556-4

Keywords

Navigation