Skip to main content
Log in

Effects of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-4.6Cu-0.3Mg-0.6Ag Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2015

Abstract

Effects of minor Sc and Zr on the microstructure and mechanical properties of Al-4.6Cu-0.3Mg-0.6Ag alloys were investigated. The results indicate that Sc- and Zr-containing alloy as well as Sc-containing alloy could produce grain refinement effects. Both the alloys had lower tensile strength and hardness compared to Sc- and Zr-free alloy, mainly because solution heat treatment could not dissolve W (Al8.5-4Cu6.6-4Sc) phase, lowering the Cu concentration in the Al matrix. Insufficient Cu solute atoms in the Al matrix could not produce a large amount of Ω and θ′ strengthening precipitates to enhance the tensile strength and hardness following T7 heat treatment. However, the T7-treated Sc-containing alloy and the T7-treated Sc- and Zr-containing alloy have similar mechanical properties. Zirconium can partially replace expensive Sc to produce grain refinement effects on Al-Cu-Mg-Ag alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Davis, Aluminum and Aluminum Alloys: ASM Specialty Handbook, ASM International, Materials Park, OH, 1993, p 88-220.

  2. A. Grag, Y.C. Chang, and J.M. Howe, Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy, Scr. Metall. Mater., 1990, 24, p 677–680

    Article  Google Scholar 

  3. B.C. Muddle and I.J. Polmear, The Precipitate Ω Phase in Al-Cu-Mg-Ag Alloys, Acta Metall., 1989, 37, p 777–789

    Article  Google Scholar 

  4. Y.X. Gu, Z.Y. Liu, D. Yu, B.B. Liu, M. Lin, and S.M. Zeng, Growth of X Plates and Its Effect on Mechanical Properties in Al-Cu-Mg-Ag Alloy with High Content of Silver, J. Mater. Eng. Perform., 2013, 22, p 1708–1715

    Article  Google Scholar 

  5. K.M. Knowles and W.M. Stobbs, The Structure of 111 Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys, Acta Crystallogr. B, 1988, 44, p 207–227

    Article  Google Scholar 

  6. L. Bakavos, P.B. Prangnell, B. Besb, and F. Eberl, The Effect of Silver on Microstructural Evolution in two 2xxx Series Al-Alloys with a High Cu:Mg Ratio During Ageing to a T8 Temper, Mater. Sci. Eng. A, 2008, 491, p 214–223

    Article  Google Scholar 

  7. U. Prisco, A. Squillace, A. Astarita, and C. Velotti, Influence of Welding Parameters and Post-Weld Aging on Tensile Properties and Fracture Location of AA2139-T351 Friction-Stir-Welded Joints, Mater. Res., 2013, 16, p 1106–1112

    Article  Google Scholar 

  8. C. Velotti, A. Astarita, P. Buonadonna, G. Dionoro, A. Langella, V. Paradiso, U. Prisco, F. Scherillo, A. Squillace, and A. Tronci, FSW of AA 2139 Plates: Influence of the Temper State on the Mechanical Properties, Key Eng. Mater., 2013, 554–557, p 1065–1074

    Article  Google Scholar 

  9. C.H. Chang, S.L. Lee, J.C. Lin, M.S. Yeh, and R.R. Jeng, Effect of Ag Content and Heat Treatment on the Stress Corrosion Cracking of Al-4.6Cu-0.3Mg Alloy, Mater. Chem. Phys., 2005, 91, p 454–462

    Article  Google Scholar 

  10. K. Hono, T. Sakurai, and I.J. Polmear, Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy, Scr. Metall. Mater., 1994, 30, p 695–700

    Article  Google Scholar 

  11. V.G. Davydov, T.D. Tostove, V.V. Zakharov, Y.A. Filatov, and V.I. Yelagin, Scientific Principle of Making an Alloying Addition of Scandium to Aluminium Alloys, Mater. Sci. Eng. A, 2000, 280, p 30–36

    Article  Google Scholar 

  12. D.N. Seilman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Teperature of Heat-Treatable Al(Sc) Alloys, Acta Mater., 2002, 50, p 021–4035

    Google Scholar 

  13. M.L. Kharakterova, Phase Composition of Al-Cu-Sc Alloys at Temperatures of 450 and 500 °C, Izvestiya Akademii Nauk SSSR. Metally, 1991, 4, p 195–199

    Google Scholar 

  14. V.V. Zakharov and T.D. Rostova, On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys, Met. Sci. Heat Treat., 1995, 37, p 65–69

    Article  Google Scholar 

  15. A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, and P.B. Prangnell, Examination of the Effect of Sc on 2000 and 7000 Series Aluminium Alloy Castings: For Improvements in Fusion Welding, Mater. Sci. Eng. A, 2003, 354, p 188–198

    Article  Google Scholar 

  16. M.L. Kharakterova, D.G. Eskin, and L.S. Toropova, On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys, Acta Metall. Mater., 1994, 42, p 2285–2290

    Article  Google Scholar 

  17. K. Yu, W. Li, S. Li, and J. Zhao, Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases, Mater. Sci. Eng. A, 2004, 368, p 88–93

    Article  Google Scholar 

  18. B. Forbord, H. Hallem, J. Royset, and K. Mathinsen, Thermal Stability of Al3(Scx, Zr1-x)-Dispersoids in Extruded Aluminium Alloys, Mater. Sci. Eng. A, 2008, 475, p 241–248

    Article  Google Scholar 

  19. K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1 Sc-0.1 Zr (at.%) Alloys During Isochronal Aging, Acta Mater., 2010, 58, p 5184–5195

    Article  Google Scholar 

  20. A.K. Mukhopadhyay, Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg-(Li) Alloys Containing Ag, Scr. Mater., 1999, 41, p 667–672

    Article  Google Scholar 

  21. Y. Harada and D.C. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2002, 329–331, p 686–695

    Article  Google Scholar 

  22. M. Gazizova, V. Teleshovb, V. Zakharovb, and R. Kaibysheva, Solidification Behaviour and the Effects of Homogenisation on the Structure of an Al-Cu-Mg-Ag-Sc Alloy, J. Alloys Compd., 2011, 509, p 9497–9507

    Article  Google Scholar 

  23. V.I. Elagin, V.V. Zakharov, and T.D. Rostova, Scandium-Alloyed Aluminum Alloys, Met. Sci. Heat Treat., 1992, 1, p 37–45

    Article  Google Scholar 

  24. C.H. Chang, S.L. Lee, T.Y. Hsu, and J.C. Lin, Impact of Cu/Mg Ratio on Thermal Stability of Hot Extrusion of Al4.6 Pct Cu-Mg-Ag Alloys, Metall. Mater. Trans. A, 2007, 38, p 2832–2842

    Article  Google Scholar 

  25. S.F. Fang, M.P. Wang, and M. Song, An Approach for the Aging Process Optimization of Al-Zn-Mg-Cu Series Alloys, Mater. Des., 2009, 30, p 2460–2467

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan under Contract NSC-101-2221-E-008-037-MY2 for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Long Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SL., Wu, CT. & Chen, YD. Effects of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-4.6Cu-0.3Mg-0.6Ag Alloys. J. of Materi Eng and Perform 24, 1165–1172 (2015). https://doi.org/10.1007/s11665-014-1364-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1364-2

Keywords

Navigation