Skip to main content
Log in

Impact of Cu/Mg Ratio on Thermal Stability of Hot Extrusion of Al-4.6 Pct Cu-Mg-Ag Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work explores how the Cu/Mg ratio affects the thermal stability of the extrusion of Al-4.6 pct Cu-Mg-Ag alloys at aerodynamic heating temperatures of up to 155 °C for 1000 hours. The Cu/Mg ratio was modified by adding various amounts of elemental Mg. The alloy microstructures, which determine thermal stability, were analyzed with an optical microscope, an electrical conductivity meter, a differential scanning calorimeter (DSC), and a transmission electron microscope. Experimental results indicate that reducing the Cu/Mg ratio of the alloy by the further addition of Mg causes Ω to become the primary strengthening phase after aging treatment, increasing the hardness and the thermal stability, although the θ′ phase is suppressed. The S phase does not affect the thermal stability of the alloy, because it is present in only a low quantity. Results of this study also demonstrate that the hot-extruded low Cu/Mg alloy satisfies the requirement of the material thermal stability of commercial supersonic aerial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. J.E. Hatch: Aluminum Properties and Physical Metallurgy, ASM INTERNATIONAL, Metals Park, OH, 1984, pp. 321–65

    Google Scholar 

  2. I.J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A.J. Morton, W.E. Borbidge, S. Rogers: Mater. Sci. Technol., 1999, vol. 15, pp. 861–68

    CAS  Google Scholar 

  3. S.M. Kazanjian, N. Wang, E.A. Starke Jr.: Mater. Sci. Eng. A, 1997, vols. A234–A236, pp. 571–74

    Google Scholar 

  4. V.A. Phillips: Acta Mater., 1975, vol. 23, pp. 751–67

    Article  CAS  Google Scholar 

  5. I.J. Polmear: Trans. TMS-AIME, 1964, vol. 230, pp. 1331–39

    CAS  Google Scholar 

  6. J.T. Vietz, I.J. Polmear: J. Inst. Met., 1966, vol. 94, pp. 410–17

    CAS  Google Scholar 

  7. R.J. Chester, I.J. Polmear: Metallurgy of Light Alloys, Spring Residential Conf., Institute of Metallurgists, London, 1983, vol. 3 (20), pp. 75–81

  8. K.M. Knowles, W.M. Stobbs: Acta Cryst. B, 1988, B44, pp. 207–27

    Article  CAS  Google Scholar 

  9. B.C. Muddle, I.J. Polmear: Acta Mater., 1989, vol. 37, pp. 777–89

    Article  CAS  Google Scholar 

  10. K. Hono, N. Sano, S.S. Babu, R. Okano, T. Sakurai: Acta Mater., 1993, vol. 41, pp. 829–38

    Article  CAS  Google Scholar 

  11. K. Hono, T. Sakurai, I.J. Polmear: Scripta Metall., 1994, vol. 30, pp. 695–700

    Article  CAS  Google Scholar 

  12. S.P. Ringer, K. Hono, I.J. Polmear, T. Sakurai: Acta Mater., 1996, vol. 44, pp. 1883–98

    Article  CAS  Google Scholar 

  13. I.J. Polmear, M.J. Couper: Metall. Trans. A, 1988, vol. 19A, pp. 1027–35

    CAS  Google Scholar 

  14. S.P. Ringer, W. Yeung, B.C. Muddle, I.J. Polmear: Acta Mater., 1994, vol. 42, pp. 1715–25

    Article  CAS  Google Scholar 

  15. L. Del Castillo, E.J. Lavernia: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 287–98

    Google Scholar 

  16. R.J. Chester, I.J. Polmear: Micron, 1980, vol. 11, pp. 311–12

    CAS  Google Scholar 

  17. O. Beffort, C. Solenthaler, P.J. Uggowitzer, M.O. Speidel: Mater. Sci. Eng. A, 1995, vol. A191, pp. 121–34

    CAS  Google Scholar 

  18. B.M. Gable, G.J. Shiflet, E.A. Starke Jr.: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1091–1105

    Article  CAS  Google Scholar 

  19. S.P. Ringer, W. Yeung, B.C. Muddle, I.J. Polmear: Acta Mater., 1994, vol. 42, pp. 1715–25

    Article  CAS  Google Scholar 

  20. C.R. Hutchison, X. Fan, S.J. Pennycook, G.J. Shiflet: Acta Mater., 2001, vol. 49, pp. 2827–41

    Article  Google Scholar 

  21. S.P. Ringer, B.C. Muddle, I.J. Polmear: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1659–71

    Article  CAS  Google Scholar 

  22. S. Muraishi, S. Kumai, A. Sato: Mater. Trans., 2004, vol. 45, pp. 2974–80

    Article  CAS  Google Scholar 

  23. S. Kalpakjian: Manufacturing Engineering Technology, 3rd ed., Addison-Wesley, Reading, MA, 1995, pp. 417–28

    Google Scholar 

  24. J.R. Davis: ASM Specialty Handbook Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Metals Park, OH, 1994, pp. 89–120

    Google Scholar 

  25. J.R. Davis: ASM Specialty Handbook Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Metals Park, OH, 1993, pp. 706–08

    Google Scholar 

  26. K. Osamura, N. Otsuka, Y. Murakami: Phil. Mag. B, 1982, vol. B45, pp. 583–99

    Google Scholar 

  27. G. Riontino, S. Abis: Phil. Mag. B, 1991, vol. B64, pp. 447–61

    Google Scholar 

  28. R.E. Reed-Hill, R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing, Boston, MA, 1994, p. 521

    Google Scholar 

  29. M.A. Kenawy, M.R. Nagy, M.S. Sakr, M.T. Mostafa: Phys Status Solidi A, 1986, vol. 97, pp. k73–k78

    Article  CAS  Google Scholar 

  30. A.J. Hillel: Phil. Mag., 1983, vol. 48, pp. 237–43

    Article  CAS  Google Scholar 

  31. S. Hirosawa, T. Sato, J. Yokota, A. Kamio: Mater. Trans. JIM, 1998, vol. 39, pp. 139–46

    CAS  Google Scholar 

  32. J.E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM INTERNATIONAL, Metals Park, OH, 1984, p. 177

    Google Scholar 

  33. Q. Li, R.N. Shenoy: Mater. Sci., 1997, vol. 32, pp. 3401–06

    Article  CAS  Google Scholar 

  34. S. Abis, P. Mengucci, G. Riontino: Phil. Mag. B, 1993, vol. B67, pp. 465–84

    Google Scholar 

  35. C.H. Chang, S.L. Lee, J.C. Lin, R.R. Jeng: Mater. Trans., 2005, vol. 46, pp. 236–40

    Article  CAS  Google Scholar 

  36. V. Radmilovic, G. Thomas, G.J. Shiflet, E.A. Starke Jr.: Scripta Metall., 1989, vol. 23, pp. 1141–46

    Article  CAS  Google Scholar 

  37. R.E. Reed-Hill, R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing Co., Boston, MA, 1991, pp. 272–88

    Google Scholar 

  38. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo: Scripta Mater., 1999, vol. 41, pp. 643–49

    Article  CAS  Google Scholar 

  39. C.H. Chang, S.L. Lee, J.C. Lin, M.S. Yeh, R.R. Jeng: Mater. Chem. Phys., 2005, vol. 91 (2–3), pp. 454–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Material and Electro-optics Research Division of the Chung-Sheng Institute of Science and Technology, Taiwan, Republic of China, for financially supporting this research under Contract No. NSC 92-2623-7-008-002. The authors also thank Mr. Yue Te Chen for his enthusiastic assistance with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Horng Chang.

Additional information

Manuscript submitted October 21, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CH., Lee, SL., Hsu, TY. et al. Impact of Cu/Mg Ratio on Thermal Stability of Hot Extrusion of Al-4.6 Pct Cu-Mg-Ag Alloys. Metall Mater Trans A 38, 2832–2842 (2007). https://doi.org/10.1007/s11661-007-9332-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9332-1

Keywords

Navigation