Skip to main content
Log in

Investigation of Microstructural Uniformity During Isothermal Forging of Ti-6Al-4V

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of strain on microstructural changes and the primary alpha (αP) volume fraction as well as the workability of Ti-6Al-4V are studied by isothermal compression of wedge-shaped specimens at the initial temperatures of 850, 900, and 950 °C and platen velocities of 2.5, 25, and 250 mm/min in combination with finite element method. The results show that higher platen velocity leads to a lesser αP volume fraction at all of the temperatures. Higher temperature reduces the αP volume fraction, but increases the impact of strain and platen velocity on the microstructure through the specimen. A more uniform distribution of the primary alpha volume fraction can be achieved by decreasing the initial temperature and/or platen velocity. All of the specimens were free from any defects and can withstand a compression with the normalized Cockcroft-Latham damage value of 0.61.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Seshacharyulu, S. Medeiros, W. Frazier, and Y. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194

    Article  Google Scholar 

  2. J. Kim, N. Reddy, J. Yeom, C. Lee, and N. Park, Artificial Neural Network Modeling of Phase Volume Fraction of Ti Alloy Under Isothermal and Non-isothermal Hot Forging Conditions, J. Mech. Sci. Technol., 2007, 21, p 1560–1565

    Article  Google Scholar 

  3. R. Ding and Z. Guo, Microstructural Evolution of a Ti-6Al-4V Alloy During β-Phase Processing: Experimental and Simulative Investigations, Mater. Sci. Eng. A, 2004, 365, p 172–179

    Article  Google Scholar 

  4. Y.C. Wang and T.G. Langdon, Influence of Phase Volume Fractions on the Processing of a Ti-6Al-4V Alloy by High-Pressure Torsion, Mater. Sci. Eng. A, 2013, 559, p 861–867

    Article  Google Scholar 

  5. I. Weiss, F. Froes, D. Eylon, and G. Welsch, Modification of Alpha Morphology in Ti-6Al-4V by Thermomechanical Processing, Metall. Trans. A, 1986, 17, p 1935–1947

    Article  Google Scholar 

  6. P. Ari-Gur and S. Semiatin, Evolution of Microstructure, Macrotexture and Microtexture During Hot Rolling of Ti-6A1-4V, Mater. Sci. Eng. A, 1998, 257, p 118–127

    Article  Google Scholar 

  7. S. Semiatin, V. Seetharaman, and I. Weiss, Flow Behavior and Globularization Kinetics During Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure, Mater. Sci. Eng. A, 1999, 263, p 257–271

    Article  Google Scholar 

  8. Z. Hu, J. Brooks, and T. Dean, Experimental and Theoretical Analysis of Deformation and Microstructural Evolution in the Hot-Die Forging of Titanium Alloy Aerofoil Sections, J. Mater. Process. Technol., 1999, 88, p 251–265

    Article  Google Scholar 

  9. J. Luo, B. Wu, and M.-Q. Li, 3D Finite Element Simulation of Microstructure Evolution in Blade Forging of Ti-6Al-4V Alloy Based on the Internal State Variable Models, Int. J. Min. Met. Mater., 2012, 19, p 122–130

    Article  Google Scholar 

  10. Y. Prasad, T. Seshacharyulu, S. Medeiros, and W. Frazier, Microstructural Modeling and Process Control During Hot Working of Commercial Ti-6A1-4V: Response of Lamellar and Equiaxed Starting Microstructures, Mater. Manuf. Process., 2000, 15, p 581–604

    Article  Google Scholar 

  11. R. Ding, Z. Guo, and A. Wilson, Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327, p 233–245

    Article  Google Scholar 

  12. T. Seshacharyulu, S. Medeiros, W. Frazier, and Y. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325, p 112–125

    Article  Google Scholar 

  13. M.-Q. Li and A.-M. Xiong, New Model of Microstructural Evolution During Isothermal Forging of Ti-6Al-4V Alloy, Mater. Sci. Technol., 2002, 18, p 212–214

    Article  Google Scholar 

  14. W. Yu, M. Li, and J. Luo, Effect of Processing Parameters on Microstructure and Mechanical Properties in High Temperature Deformation of Ti-6Al-4V Alloy, Rare Metal. Mater. Eng., 2009, 38, p 19–24

    Article  Google Scholar 

  15. J. Luo, M. Li, H. Li, and W. Yu, Effect of the Strain on the Deformation Behavior of Isothermally Compressed Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2009, 505, p 88–95

    Article  Google Scholar 

  16. J. Luo, M. Li, W. Yu, and H. Li, Effect of the Strain on Processing Maps of Titanium Alloys in Isothermal Compression, Mater. Sci. Eng. A, 2009, 504, p 90–98

    Article  Google Scholar 

  17. J.H. Kim, N. Reddy, J.T. Yeom, J.K. Hong, C.S. Lee, and N.-K. Park, Microstructure Prediction of Two-Phase Titanium Alloy During Hot Forging Using Artificial Neural Networks and FE Simulation, Met. Mater. Int., 2009, 15, p 427–437

    Article  Google Scholar 

  18. F. Warchomicka, C. Poletti, M. Stockinger, and T. Henke, Microstructure Evolution During Hot Deformation of Ti-6Al-4V Double Cone Specimens, Int. J. Mater. Form., 2010, 3, p 215–218

    Article  Google Scholar 

  19. X. Fan, H. Yang, Z. Sun, and D. Zhang, Effect of Deformation Inhomogeneity on the Microstructure and Mechanical Properties of Large-Scale Rib-Web Component of Titanium Alloy Under Local Loading Forming, Mater. Sci. Eng. A, 2010, 527, p 5391–5399

    Article  Google Scholar 

  20. S. Abbasi and A. Momeni, Effect of Hot Working and Post-deformation Heat Treatment on Microstructure and Tensile Properties of Ti-6Al-4V Alloy, Trans. Nonferr. Metal. Soc., 2011, 21, p 1728–1734

    Article  Google Scholar 

  21. J. Xiao, D. Li, X. Li, and T. Deng, Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation, J. Alloy. Compd., 2012, 541, p 346–352

    Article  Google Scholar 

  22. L. He, A. Dehghan-Manshadi, and R. Dippenaar, The Evolution of Microstructure of Ti-6Al-4V Alloy During Concurrent Hot Deformation and Phase Transformation, Mater. Sci. Eng. A, 2012, 549, p 163–167

    Article  Google Scholar 

  23. W. Yu, M. Li, and J. Luo, Variation Effect of Strain Rate on Microstructure in Isothermal Compression of Ti-6Al-4V Alloy, Rare Met., 2012, 31, p 7–11

    Article  Google Scholar 

  24. J. Hall, Fatigue Crack Initiation in Alpha-Beta Titanium Alloys, Int. J. Fatigue, 1997, 19, p 23–37

    Article  Google Scholar 

  25. Y. Honnorat, Issues and Breakthrough in the Manufacture of Turboengine Titanium Parts, Mater. Sci. Eng. A, 1996, 213, p 115–123

    Article  Google Scholar 

  26. G. Wu, C. Shi, W. Sha, A. Sha, and H. Jiang, Effect of Microstructure on the Fatigue Properties of Ti-6Al-4V Titanium Alloys, Mater. Design, 2013, 46, p 668–674

    Article  Google Scholar 

  27. M.H. Parsa, M.N. Ahmadabadi, H. Shirazi, B. Poorganji, and P. Pournia, Evaluation of Microstructure Change and Hot Workability of High Nickel High Strength Steel Using Wedge Test, J. Mater. Process. Technol., 2008, 199, p 304–313

    Article  Google Scholar 

  28. M. Motyka, J. Sieniawski, and W. Ziaja, Microstructural Aspects of Superplasticity in Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2014, 599, p 57–63

    Article  Google Scholar 

  29. J. Fluhrer, Deform 3D User’s Manual Version 10.0, Scientific Forming Technologies Corporation, Columbus, OH, 2009

  30. G.F. Vander Voort, Metallography, Principles and Practice, ASM International, Materials Park, 1984

    Google Scholar 

  31. K. Lange, Handbook of Metal Forming, Society of Manufacturing Engineers, Dearborn, 1994

    Google Scholar 

  32. W. Jia, W. Zeng, J. Liu, Y. Zhou, and Q. Wang, On the Influence of Processing Parameters on Microstructural Evolution of a Near Alpha Titanium Alloy, Mater. Sci. Eng. A, 2011, 530, p 135–143

    Article  Google Scholar 

  33. T. Altan, Cold and Hot Forging: Fundamentals and Applications, ASM international, Materials Park, 2005

    Google Scholar 

  34. R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York, 2009

    Google Scholar 

  35. M. Shirdar, A. Golshan, S. Izman, and D. Ghodsiyeh, The Application of Surface Response Methodology to the Pretreatment of WC Substrates Prior to Diamond Coating, J. Mater. Eng. Perform., 2014, 23, p 13–24

    Article  Google Scholar 

  36. K. Velmanirajan, R. Narayanasamy, and K. Anuradha, Effect of Chemical Composition on Texture Using Response Surface Methodology, J. Mater. Eng. Perform., 2013, 22, p 3237–3257

    Article  Google Scholar 

  37. S.J. Mirahmadi, M. Hamedi, and S. Ajami, Investigating the Effects of Cross Wedge Rolling Tool Parameters on Formability of Nimonic® 80A and Nimonic® 115 Superalloys, Int. J. Adv. Manuf. Technol., 2014, doi:10.1007/s00170-014-6047-5

    Google Scholar 

Download references

Acknowledgment

The financial support for this work was partially provided by MAPNA Group under Grant No. RD-THD-91-05 which is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Javid Mirahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirahmadi, S.J., Hamedi, M. & Habibi Parsa, M. Investigation of Microstructural Uniformity During Isothermal Forging of Ti-6Al-4V. J. of Materi Eng and Perform 23, 4411–4420 (2014). https://doi.org/10.1007/s11665-014-1221-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1221-3

Keywords

Navigation