Skip to main content
Log in

Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current (P), base current (B), percent pulse-on time (T), and pulse frequency (F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆E pit). Analysis of variance (ANOVA) was performed on the measured data and S/N (signal to noise) ratios. The “bigger is better” was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆E pit of pulsed current gas tungsten arc welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.B. Lee, D.H. Shin, K.T. Park, and W.J. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359

    Article  CAS  Google Scholar 

  2. R.M. Cleveland, A.K. Ghosh, and J.R. Bradley, Comparison of Superplastic Behavior in Two 5083 Aluminum Alloys, Mater. Sci. Eng. A, 2003, 351, p 228–236

    Article  Google Scholar 

  3. R. Kaibyshev, F. Musin, D.R. Lesuer, and T.G. Nieh, Superplastic Behavior of an Al-Mg Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2003, 342, p 169–177

    Article  Google Scholar 

  4. C. Menzemer and P.C. Lam, An Investigation of Fusion Zone Microstructures of Welded Aluminum Alloy Joints, Mater. Lett., 1999, 41, p 192–197

    Article  CAS  Google Scholar 

  5. ASM International Handbook Committee, ASM Handbook, vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Wrought Aluminum and Aluminum Alloy Designation System, ASM International, 1992, p 137

  6. K. Shankar and W. Wu, Effect of Welding and Weld Repair on Crack Propagation Bahaviour in Aluminium Alloy 5083 Plates, Mater. Des., 2002, 23, p 201–208

    Article  CAS  Google Scholar 

  7. R.E. Sanders, Jr., S.F. Baumann, and H.C. Stumpf, Aluminum Alloys: Contemporary Research and Applications, Academic Press, New York City, 1989

    Google Scholar 

  8. A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, and M. Marcos, Localized Alkaline Corrosion of Alloy AA5083 in Neutral 3.5% NaCl Solution, Corros. Sci., 2001, 43, p 1657–1674

    Article  CAS  Google Scholar 

  9. M. Bethencourt, F. Botana, J. Calvino, M. Marcus, J. Perez, and M. Redriques, Electrochemical Impedance Spectroscopy Study of the Behavior of Lanthanide-Rich Films Formed on Aluminum-Magnesium Alloys, Mater. Sci. Forum, 1998, 289–92, p 557–566

    Google Scholar 

  10. H. Ezuber, A. El-Houd, and F. El-Shawesh, A Study on the Corrosion Behavior of Aluminum Alloys in Seawater, Mater. Des., 2008, 29, p 801–805

    Article  CAS  Google Scholar 

  11. J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, and X.S. Zhao, Simulation Study on Function Mechanism of Some Precipitates in Localized Corrosion of Al Alloys, Corros. Sci., 2007, 49, p 2436–2449

    Article  CAS  Google Scholar 

  12. R.C. Calcraft, M.A. Wahab, D.M. Viano, G.O. Schumann, R.H. Phillips, and N.U. Ahmed, The Development of Welding Procedures and the Fatigue of Butt-Welded Structures of Aluminium-AA5383, J. Mater. Process. Technol., 1999, 92–3, p 60–65

    Article  Google Scholar 

  13. T. Senthil Kumar, V. Balasubramanian, and M.Y. Sanavullah, Influences of Pulsed Current Tungsten Inert Gas Welding Parameters on the Tensile Properties of AA6061 Aluminium alloy, Mater. Des., 2007, 28, p 2080–2092

    Article  Google Scholar 

  14. S.R. Koteswara Rao, G. Madhusudhana Reddy, M. Kamaraj, and K. Prasad Rao, Grain Refinement through Arc Manipulation Techniques in Al-Cu Alloy GTA Welds, Mater. Sci. Eng. A, 2005, 404, p 227–234

    Article  Google Scholar 

  15. K.H. Tseng and C.P. Chou, The Effect of Pulsed GTA Welding in the Residual Stress of a Stainless Steel Weldment, J. Mater. Process. Technol., 2002, 123, p 346–353

    Article  CAS  Google Scholar 

  16. A. Kumar and S. Sundarrajan, Effect of Welding Parameters on Mechanical Properties and Optimization of Pulsed TIG Welding of Al-Mg-Si Alloy, Int. J. Adv. Manuf. Technol., 2009, 42, p 118–125

    Article  Google Scholar 

  17. G. Mathers, The Welding of Aluminium and Its Alloys, Woodhead Publishing Limited, Cambridge, 2002

    Book  Google Scholar 

  18. H. Tong and M. Todo, AC Pulse Arc Welding Method, U.S. Patent, 0284854 A1, 2005

  19. W.L. Liu, W.T. Chien, M.H. Jiang, and W.J. Chen, Study of Nd:YAG Laser Annealing of Electroless Ni-P Film on Spiegel-iron Plate by Taguchi Method and Grey System Theory, J. Alloy Compd., 2010, 495, p 97–103

    Article  CAS  Google Scholar 

  20. C. Vidal, V. Infante, and P. Vilaça, Assessment of Improvement Techniques Effect on Fatigue Behaviour of Friction Stir Welded Aerospace Aluminium Alloys, Procedia Eng., 2010, 2, p 1605–1616

    Article  Google Scholar 

  21. P.K. Giridharan and N. Murugan, Optimization of Pulsed GTA Welding Process Parameter for the Welding of AISI, 304L Stainless Steel Sheets, Int. J. Adv. Manuf. Technol., 2009, 40, p 478–489

    Article  Google Scholar 

  22. A. Aballe, M. Bethencourt, F.J. Botana, and M. Marcos, CeCl3 and LaCl3 Binary Solutions as Environment-Friendly Corrosion Inhibitors of AA5083 Al-Mg Alloy in NaCl Solutions, J. Alloy Compd., 2001, 323–4, p 855–858

    Article  Google Scholar 

  23. M.A. Arenas, M. Bethencourt, F.J. Botana, J. de Damborenea, and M. Marcos, Inhibition of 5083 Aluminium Alloy and Galvanised Steel by Lanthanide Salts, Corros. Sci., 2001, 43, p 157–170

    Article  CAS  Google Scholar 

  24. M. Balasubramanian, V. Jayabalan, and V. Balasubramanian, Effect of Pulsed Gas Tungsten Arc Welding on Corrosion Behavior of Ti-6Al-4V Titanium Alloy, Mater. Des., 2008, 29, p 1359–1363

    Article  CAS  Google Scholar 

  25. V. Balasubramanian, V. Jayabalan, and M. Balasubramanian, Effect of Current Pulsing on Tensile Properties of Titanium Alloy, Mater. Des., 2008, 29, p 1459–1466

    Article  CAS  Google Scholar 

  26. T.S. Kumar, V. Balasubramaniany, M.Y. Sanavullah, and S. Babu, Effect of Pulsed Current TIG Welding Parameters on Pitting Corrosion Behaviour of AA6061 Aluminium Alloy, J. Mater. Sci. Technol., 2007, 23, p 223–229

    CAS  Google Scholar 

  27. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Effect of Pulsed Current Welding on Fatigue Behaviour of High Strength Aluminium Alloy Joints, Mater. Des., 2008, 29, p 492–500

    Article  CAS  Google Scholar 

  28. V. Balasubramanian, V. Ravisankar, and G. Madhusudhan Reddy, Influences of Pulsed Current Welding and Post Weld Aging Treatment on Fatigue Crack Growth Behaviour of AA7075 Aluminium Alloy Joints, Int. J. Fatigue, 2008, 30, p 405–416

    Article  CAS  Google Scholar 

  29. A. Kumar and S. Sundarrajan, Optimization of Pulsed TIG Welding Process Parameters on Mechanical Properties of AA 5456 Aluminum Alloy Weldments, Mater. Des., 2009, 30, p 1288–1297

    Article  CAS  Google Scholar 

  30. G. Lothongkum, E. Viyanit, and P. Bhandhubanyong, Study on the Effects of Pulsed TIG Welding Parameters on Delta-Ferrite Content, Shape Factor and Bead Quality in Orbital Welding of AISI, 316L Stainless Steel Plate, J. Mater. Process. Technol., 2001, 110, p 233–238

    Article  CAS  Google Scholar 

  31. R. Senthilkumar, S. Vaidyanathan, and B. Sivaraman, Thermal Analysis of Heat Pipe Using Taguchi Method, Int. J. Eng. Sci. Technol., 2010, 2, p 564–569

    Google Scholar 

  32. A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, and M. Marcos, Influence of the Cathodic Intermetallics Distribution on the Reproducibility of the Electrochemical Measurements on AA5083 Alloy in NaCl Solutions, Corros. Sci., 2003, 45, p 161–180

    Article  Google Scholar 

  33. A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, and J.M. Sanchez-Amaya, Influence of the Degree of Polishing of Alloy AA 5083 on its Behaviour Against Localised Alkaline Corrosion, Corros. Sci., 2004, 46, p 1909–1920

    Article  CAS  Google Scholar 

  34. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, and G.S. Ferreira, Role of Intermetallic Phases in Localized Corrosion of AA5083, Electrochim. Acta, 2007, 52, p 7651–7659

    Article  CAS  Google Scholar 

  35. S. Katsas, J. Nikolaou, and G. Papadimitriou, Corrosion Resistance of Repair Welded Naval Aluminium Alloys, Mater. Des., 2007, 28, p 831–836

    Article  CAS  Google Scholar 

  36. S. Katsas, J. Nikolaou, and G. Papadimitriou, Microstructural Changes Accompanying Repair Welding in 5xxx Aluminium Alloys and their Effect on the Mechanical Properties, Mater. Des., 2006, 27, p 968–975

    Article  CAS  Google Scholar 

  37. Image Tool, version 3.0, Free Software, University of Texas Health Science Center at San Antonio, http://ddsdx.uthscsa.edu/dig/itdesc.html. Accessed 09 March 2007

  38. G.P. Syrcos, Die Casting Process Optimization Using Taguchi Methods, J. Mater. Process. Technol., 2003, 135, p 68–74

    Article  CAS  Google Scholar 

  39. R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, Wiley, New York, 2001

    Google Scholar 

  40. Y. Ma, H. Hu, D. Northwood, and X. Nie, Optimization of the Electrolytic Plasma Oxidation Processes for Corrosion Protection of Magnesium Alloy AM50 using the Taguchi Method, J. Mater. Process. Technol., 2007, 182, p 58–64

    Article  CAS  Google Scholar 

  41. R.K. Roy, A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, 1990

    Google Scholar 

  42. K.D. Kim, D.N. Han, and H.T. Kim, Optimization of Experimental Conditions Based on the Taguchi Robust Design for the Formation of Nano-Sized Silver Particles by Chemical Reduction Method, Chem. Eng. J., 2004, 104, p 55–61

    Article  CAS  Google Scholar 

  43. Z.B. Gonder, Y. Kaya, I. Vergili, and H. Barlas, Optimization of Filtration Conditions for CIP Wastewater Treatment by Nanofiltration Process Using Taguchi Approach, Sep. Purif. Technol., 2010, 70, p 265–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastkerdar, E., Shamanian, M. & Saatchi, A. Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds. J. of Materi Eng and Perform 22, 1149–1160 (2013). https://doi.org/10.1007/s11665-012-0346-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0346-5

Keywords

Navigation