Skip to main content
Log in

Stacking Fault Expansion from an Interfacial Dislocation in a 4H-SiC PIN Diode and Its Expansion Process

  • Topical Collection: 19th Conference on Defects (DRIP XIX)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A stacking fault (SF) that expanded from an interfacial dislocation (ID), which was formed from a basal plane dislocation (BPD) during high-temperature annealing, and its expansion process were investigated by electroluminescence imaging during a current stress test, and by various crystal analyses. The SF was observed during electroluminescence observation of PIN diodes that had line-and-space anodes with open windows. The SF started to expand from the surface side of the ID at low current densities, changed its shape variously, and finally became a parallelogram. A dislocation line inside the expanded parallelogram-shaped SF indicated that the origin was not a single BPD. Cross-sectional high-resolution transmission electron microscopy revealed another SF that was a (3 2 1 2) stacking structure between two single Shockley stacking fault (1SSF) regions at that dislocation line. In addition, the tetrahedra of the two 1SSFs were face-to-face and were offset by two layers. This result means that the original structure of the 1SSFs was a BPD-threading edge dislocation (TED) structure with two BPD segments. The two BPD segments had rotational twin-like structures forming a dislocation loop with each other and the TED between them was present in only two layers. A crystallographic analysis to investigate the expansion mechanism showed consistent results, with the two types of dislocation loops and extinction of the same types of partial dislocations of the Si-core and the C-core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P.A. Nilsson, J.P. Bergman, and P. Skytt, Long term operation of 4.5kV PiN and 2.5kV JBS diodes. Mater. Sci. Forum 353–356, 727 (2001).

    Article  Google Scholar 

  2. J.Q. Liu, M. Skowronski, C. Hallin, R. Söderholm, and H. Lendenmann, Structure of recombination-induced stacking faults in high-voltage SiC p–n junctions. Appl. Phys. Lett. 80, 749 (2002).

    Article  CAS  Google Scholar 

  3. A. Agarwal, H. Fatima, S. Haney, and S.H. Ryu, A new degradation mechanism in high-voltage SiC power MOSFETs. IEEE Electron Device Lett. 28, 587 (2007).

    Article  CAS  Google Scholar 

  4. M. Skowronski, and S. Ha, Degradation of hexagonal silicon-carbide-based bipolar devices. J. Appl. Phys. 99, 011101 (2006).

    Article  Google Scholar 

  5. J.P. Bergman, H. Lendenmann, P.A. Nilsson, U. Lindefeit, and P. Skytt, Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes. Mater. Sci. Forum 353–356, 299 (2001).

    Article  Google Scholar 

  6. R.E. Stahlbush, J.B. Fedison, S.D. Arthur, L.B. Rowland, J.W. Kretchmer, and S. Wang, Propagation of current-induced stacking faults and forward voltage degradation in 4H-SiC PiN diodes. Mater. Sci. Forum 389–393, 427 (2002).

    Article  Google Scholar 

  7. N.A. Mahadik, R.E. Stahlbush, M.G. Ancona, E.A. Imhoff, K.D. Hobart, R.L. Myers-Ward, C.R. Eddy Jr., D.K. Gaskill, and F.J. Kub, Observation of stacking faults from basal plane dislocations in highly doped 4H-SiC epilayers. Appl. Phys. Lett. 100, 042102 (2012).

    Article  Google Scholar 

  8. A. Iijima, I. Kamata, H. Tsuchida, J. Suda, and T. Kimoto, Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philos. Mag. 97, 2736 (2017).

    Article  CAS  Google Scholar 

  9. T. Miyanagi, H. Tsuchida, I. Kamata, and T. Nakamura, Annealing effects on single Shockley faults in 4H-SiC. Appl. Phys. Lett. 89, 062104 (2006).

    Article  Google Scholar 

  10. K. Konishi, S. Yamamoto, S. Nakata, Y. Nakamura, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress. J. Appl. Phys. 114, 014504 (2013).

    Article  Google Scholar 

  11. K. Konishi, S. Yamamoto, S. Nakata, Y. Toyoda, and S. Yamakawa, Driving force of stacking fault expansion in 4H-SiC PN Diode by in situ electroluminescence imaging. Mater. Sci. Forum 778–780, 342 (2014).

    Article  Google Scholar 

  12. C. Ota, J. Nishio, K. Takao, and T. Shinohe, VF Degradation of 4H-SiC PiN diodes using low-BPD wafers. Mater. Sci. Forum 778–780, 851 (2014).

    Article  Google Scholar 

  13. T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, Short minority carrier lifetimes in highly nitrogen-doped 4H-SiC epilayers for suppression of the stacking fault formation in PiN diodes. J. Appl. Phys. 120, 115101 (2016).

    Article  Google Scholar 

  14. A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Kato, H. Tsuchida, Y. Yonezawa, and T. Kimoto, Growth of Shockley type stacking faults upon forward degradation in 4H-SiC p-i-n diodes. J. Appl. Phys. 119, 095711 (2016).

    Article  Google Scholar 

  15. Y. Iwahashi, M. Miyazato, M. Miyajima, Y. Yonezawa, T. Kato, H. Fujiwara, K. Hamada, A. Otsuki, and H. Okumura, Extension of stacking faults in 4H-SiC pn diodes under a high current pulse stress. Mater. Sci. Forum 897, 218 (2017).

    Article  Google Scholar 

  16. A. Okada, J. Nishio, R. Iijima, C. Ota, A. Goryu, M. Miyazato, M. Ryo, T. Shinohe, M. Miyajima, T. Kato, Y. Yonezawa, and H. Okumura, Dependences of contraction/expansion of stacking faults on temperature and current density in 4H-SiC p–i–n diodes. Jpn. J. Appl. Phys. 57, 061301 (2018).

    Article  Google Scholar 

  17. A. Okada, C. Ota, J. Nishio, A. Goryu, R. Iijima, K. Nakayama, T. Kato, Y. Yonezawa, and H. Okumura, Initiation of shockley stacking fault expansion in 4H-SiC P-i-N diodes. Mater. Sci. Forum 963, 280 (2019).

    Article  Google Scholar 

  18. A. Iijima, and T. Kimoto, Estimation of the critical condition for expansion/contraction of single Shockley stacking faults in 4H-SiC PiN diodes. Appl. Phys. Lett. 116, 092105 (2020).

    Article  CAS  Google Scholar 

  19. K. Takano, and Y. Igarashi, Effective method (selective E-V-C technique) to screen out the BPDs that cause reliability degradation. Mater. Sci. Forum 1062, 273 (2022).

    Article  Google Scholar 

  20. J.D. Caldwell, R.E. Stahlbush, M.G. Ancona, O.J. Glembocki, and K.D. Hobart, On the driving force for recombination-induced stacking fault motion in 4H-SiC. J. Appl. Phys. 108, 044503 (2010).

    Article  Google Scholar 

  21. Y. Mannen, K. Shimada, K. Asada, and N. Ohtani, Quantum well action model for the formation of a single Shockley stacking fault in a 4H-SiC crystal under non-equilibrium conditions. J. Appl. Phys. 125, 085705 (2019).

    Article  Google Scholar 

  22. A. Kano, A. Goryu, M. Kato, C. Ota, A. Okada, J. Nishio, K. Hirohata, and Y. Shibutani, Phase field model of single Shockley stacking fault expansion in 4H-SiC PiN diode. Jpn. J. Appl. Phys. 60, 024004 (2021).

    Article  CAS  Google Scholar 

  23. H. Jacobson, J.P. Bergman, C. Hallin, E. Janzén, T. Tuomi, and H. Lendenmann, Properties and origins of different stacking faults that cause degradation in SiC PiN diodes. J. Appl. Phys. 95, 1485 (2004).

    Article  CAS  Google Scholar 

  24. X.R. Huang, D.R. Black, A.T. Macrander, J. Maj, Y. Chen, and M. Dudley, High-geometrical-resolution imaging of dislocations in SiC using monochromatic synchrotron topography. Appl. Phys. Lett. 91, 231903 (2007).

    Article  Google Scholar 

  25. B. Kallinger, S. Polster, P. Berwian, J. Friedrich, and A.N. Danilewsky, Experimental verification of the model by Klapper for 4H-SiC homoepitaxy on vicinal substrates. J. Appl. Phys. 114, 183507 (2013).

    Article  Google Scholar 

  26. H. Matsuhata, H. Yamaguchi, T. Yamashita, T. Tanaka, B. Chen, and T. Sekiguchi, Contrast analysis of Shockley partial dislocations in 4H-SiC observed by synchrotron Berg-Barrett X-ray topography. Philos. Mag. 94, 1674 (2014).

    Article  CAS  Google Scholar 

  27. R. Tanuma, M. Nagano, I. Kamata, and H. Tsuchida, Three-dimensional imaging and tilt-angle analysis of dislocations in 4H-SiC by two-photon-excited band-edge photoluminescence. Appl. Phys. Express 7, 121303 (2014).

    Article  Google Scholar 

  28. S. Hayashi, T. Yamashita, J. Senzaki, M. Miyazato, M. Ryo, M. Miyajima, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p–i–n diodes. J. Appl. Phys. Jpn. 57, 04FR07 (2018).

    Article  Google Scholar 

  29. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Photoluminescence analysis of individual partial dislocations in 4H-SiC epilayers. Mater. Sci. Forum 1004, 376 (2020).

    Article  Google Scholar 

  30. J. Nishio, A. Okada, C. Ota, and M. Kushibe, Triangular Single Shockley Stacking Fault Analyses on 4H-SiC PiN Diode with Forward Voltage Degradation. J. Electron. Mater. 49, 5232 (2020).

    Article  CAS  Google Scholar 

  31. J. Nishio, A. Okada, C. Ota, and R. Iijima, Direct confirmation of structural differences in single Shockley stacking faults expanding from different origins in 4H-SiC PiN diodes. J. Appl. Phys. 128, 085705 (2020).

    Article  CAS  Google Scholar 

  32. J. Nishio, A. Okada, C. Ota, and R. Iijima, Single Shockley stacking fault expansion from immobile basal plane dislocations in 4H-SiC. Jpn. J. Appl. Phys. 60, SBBD01 (2021).

    Article  CAS  Google Scholar 

  33. C. Ota, J. Nishio, A. Okada, and R. Iijima, Origin and generation process of a triangular single shockley stacking fault expanding from the surface side in 4H-SiC Pin diodes. J. Electron. Mater. 50, 6504 (2021).

    Article  CAS  Google Scholar 

  34. J. Nishio, C. Ota, and R. Iijima, Structural study of single Shockley stacking faults terminated near substrate/epilayer interface in 4H-SiC. Jpn. J. Appl. Phys. 61, SC1005 (2022).

    Article  Google Scholar 

  35. J. Nishio, C. Ota, and R. Iijima, Transmission electron microscopy study of single Shockley stacking faults in 4H-SiC expanded from basal plane dislocation segments accompanied by threading edge dislocations on both ends. Mater. Sci. Forum 1062, 258 (2022).

    Article  Google Scholar 

  36. T. Miyazawa, T. Tawara, R. Takanashi, and H. Tsuchida, Vanadium doping in 4H-SiC epitaxial growth for carrier lifetime control. Appl. Phys. Express 9, 111301 (2016).

    Article  Google Scholar 

  37. X. Zhang, M. Skowronski, K.X. Liu, R.E. Stahlbush, J.J. Sumakeris, M.J. Paisley, and M.J. O’Loughlin, Glide and multiplication of basal plane dislocations during 4H-SiC homoepitaxy. J. Appl. Phys. 102, 093520 (2007).

    Article  Google Scholar 

  38. H. Tsuchida, I. Kamata, M. Nagano, L. Storasta, and T. Miyanagi, Migration of dislocations in 4H-SiC epilayers during the ion implantation process. Mater. Sci. Forum 556–557, 271 (2007).

    Article  Google Scholar 

  39. M. Nagano, H. Tsuchida, T. Suzuki, T. Hatakeyama, J. Senzaki, and K. Fukuda, Annealing induced extended defects in as-grown and ion-implanted 4H–SiC epitaxial layers. J. Appl. Phys. 108, 013511 (2010).

    Article  Google Scholar 

  40. M. Abadier, H. Song, T.S. Sudarshan, Y.N. Picard, and M. Skowronski, Glide of threading edge dislocations after basal plane dislocation conversion during 4H–SiC epitaxial growth. J. Cryst. Growth 418, 7 (2015).

    Article  CAS  Google Scholar 

  41. H. Wang, M. Dudley, F. Wu, Y. Yang, B. Raghothamachar, J. Zhang, G. Chung, B. Thomas, E.K. Sanchez, S.G. Mueller, D. Hansen, and M.J. Loboda, Studies of the origins of half-loop arrays and interfacial dislocations observed in homoepitaxial layers of 4H-SiC. J. Electron. Mater. 44, 1268 (2015).

    Article  CAS  Google Scholar 

  42. K. Konishi, R. Fujita, Y. Mori, and A. Shima, Inducing defects in 33 kV SiC MOSFETs by annealing after ion implantation and evaluating their effect on bipolar degradation of the MOSFETs. Semicond. Sci. Technol. 33, 125014 (2018).

    Article  Google Scholar 

  43. S. Hayashi, T. Yamashita, M. Miyazato, M. Miyajima, J. Senzaki, T. Kato, Y. Yonezawa, K. Kojima, and H. Okumura, Structural analysis of interfacial dislocations and expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes. Jpn. J. Appl. Phys. 58, 011005 (2019).

    Article  Google Scholar 

  44. X. Zhang, and H. Tsuchida, Conversion of basal plane dislocations to threading edge dislocations in 4H-SiC epilayers by high temperature annealing. J. Appl. Phys. 111, 123512 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The SXRT experiments were performed at SAGA-LS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiharu Ota.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, C., Nishio, J., Okada, A. et al. Stacking Fault Expansion from an Interfacial Dislocation in a 4H-SiC PIN Diode and Its Expansion Process. J. Electron. Mater. 52, 5109–5120 (2023). https://doi.org/10.1007/s11664-023-10440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10440-8

Keywords

Navigation