Skip to main content

Advertisement

Log in

Ultra-thin Low-Frequency Broadband Microwave Absorber Based on Magnetic Medium and Metamaterial

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An ultra-thin low-frequency broadband microwave absorber (MWA) based on a magnetic rubber plate (MRP) and cross-shaped structure (CSS) metamaterial (MM) was presented numerically and experimentally. The designed composite MWA is consisted of the MRP, CSS resonator, dielectric substrate and metallic background plane. The low-frequency absorption can be easily adjusted by tuning the geometric parameter of the CSS MM and the thickness of MPR. A bandwidth (i.e. the reflectance is below −10 dB) from 2.5 GHz to 5 GHz can be achieved with the total thickness of about 2 mm in experiments. The broadband absorption is attributed to the overlap of two resonant absorption peaks originated from MRP and CSS MM, respectively. More importantly, the thickness of the composite WMA is much thinner (λ/40; λ is the operation center frequency), which could operate well at wide incidence angles for both transverse electric and transverse magnetic waves. Thus, it can be expected that our design will be applicable in the area of eliminating microwave energy and electromagnetic stealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Smith and J.B. Pendry, JOSA B 23, 391 (2006).

    Article  Google Scholar 

  2. R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  Google Scholar 

  3. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  Google Scholar 

  4. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  Google Scholar 

  5. D. Schurig, J. Mock, B. Justice, S.A. Cummer, J. Pendry, A. Starr, and D. Smith, Science 314, 977 (2006).

    Article  Google Scholar 

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  7. N.I. Landy, C. Bingham, T. Tyler, N. Jokerst, D.R. Smith, and W.J. Padilla, Phys. Rev. B 79, 125104 (2009).

    Article  Google Scholar 

  8. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N.X. Fang, Nano Lett. 12, 1443 (2012).

    Article  Google Scholar 

  9. Y. Liu, S. Gu, C. Luo, and X. Zhao, Appl. Phys. A 108, 19 (2012).

    Article  Google Scholar 

  10. Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R. Cumming, Opt. Lett. 36, 945 (2011).

    Article  Google Scholar 

  11. L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.N. Luo, A.J. Taylor, and H.T. Chen, Opt. Lett. 37, 154 (2012).

    Article  Google Scholar 

  12. Y.Z. Cheng, X.S. Mao, C.J. Wu, L. Wu, and R.Z. Gong, Opt. Mater. 53, 195 (2016).

    Article  Google Scholar 

  13. C.M. Watts, X. Liu, and W.J. Padilla, Adv. Mater. 24, 98 (2012).

    Google Scholar 

  14. H. Li, L.H. Yuan, B. Zhou, X.P. Shen, Q. Cheng, and T.J. Cui, J. Appl. Phys. 110, 014909 (2011).

    Article  Google Scholar 

  15. X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, and H. Li, Opt. Express 19, 9401 (2011).

    Article  Google Scholar 

  16. Y.N. Fan, Y.Z. Cheng, Y. Nie, X. Wang, and R.Z. Gong, Chin. Phys. B 22, 067801 (2013).

    Article  Google Scholar 

  17. M.H. Li, L.Y. Guo, J.F. Dong, and H.L. Yang, J. Phys. D Appl. Phys. 47, 185102 (2014).

    Article  Google Scholar 

  18. Y.Z. Cheng, Y. Nie, and R.Z. Gong, Appl. Phys. B 111, 483 (2013).

    Article  Google Scholar 

  19. Y.Q. Ye, Y. Jin, and S. He, JOSA B 27, 498 (2010).

    Article  Google Scholar 

  20. B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, and X. Zhai, IEEE Photonics Technol. Lett. 26, 111 (2014).

    Article  Google Scholar 

  21. Y. Nie, Y.Z. Cheng, and R.Z. Gong, Chin. Phys. B 22, 044102 (2013).

    Article  Google Scholar 

  22. L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, Appl. Phys. A 121, 233 (2015).

    Article  Google Scholar 

  23. H.B. Zhang, L.W. Deng, P.H. Zhou, L. Zhang, D.M. Cheng, H.Y. Chen, D.F. Liang, and L.J. Deng, J. Appl. Phys. 113, 013903 (2013).

    Article  Google Scholar 

  24. Y.Z. Cheng, Y. Nie, X. Wang, and R.Z. Gong, J. Appl. Phys. 115, 064902 (2014).

    Article  Google Scholar 

  25. W.B. Weir, Proc. IEEE 62, 33 (1974).

    Article  Google Scholar 

  26. E. Michielssen, J.M. Sajer, S. Ranjithan, and R. Mittra, IEEE Trans. Microw. Theory Tech. 41, 1024 (1993).

    Article  Google Scholar 

  27. A. Aharoni, J. Appl. Phys. 81, 830 (1997).

    Article  Google Scholar 

  28. Y.Z. Cheng, R.Z. Gong, and Z.Z. Cheng, Opt. Commun. 361, 41 (2016).

    Article  Google Scholar 

  29. J.C. Zhao and Y.Z. Cheng, J. Electron. Mater. 44, 4269 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., He, B., Zhao, J. et al. Ultra-thin Low-Frequency Broadband Microwave Absorber Based on Magnetic Medium and Metamaterial. J. Electron. Mater. 46, 1293–1299 (2017). https://doi.org/10.1007/s11664-016-5115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5115-z

Keywords

Navigation