Skip to main content
Log in

Enhancement of Thermoelectric Properties of Bulk Si by Dispersing Size-Controlled VSi2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The efficiency of a thermoelectric (TE) device is determined by the temperature difference applied across it and the dimensionless figure␣of merit (ZT) of its TE materials. High ZT value means high performance, which requires high carrier mobility (μ) as well as low lattice thermal conductivity (κ lat); i.e., ZT is roughly proportional to μ/κ lat. Si exhibits good electrical properties, but its κ lat is remarkably high, leading to low ZT. To enhance the ZT, we adopted nanostructuring via dispersion of nanoscale silicide precipitates in bulk Si, which would lead to κ lat reduction while retaining good electrical properties. Here, we focused on VSi2 as the dispersed precipitates, because Si and VSi2 have a eutectic point located in the Si-rich part. The eutectic composition is Si:VSi2 = 91:3, i.e., Si:V = 97:3 in atomic ratio. In the present study, we successfully fabricated Si–VSi2 composite bulks with composition (Si100P3)97V3 and various morphologies by a method combining melt spinning (MS) and spark plasma sintering (SPS). By controlling mainly the MS cooling rate and SPS temperature, the size and dispersion morphology of the VSi2 precipitates were optimized. It was revealed that, on dispersing size-controlled VSi2 precipitates, κ lat decreased while μ did not change significantly, thus μ/κ lat increased. A maximum ZT value of 0.23 at 1070 K was obtained, approximately 37% higher than that of optimized bulk Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kajikawa, Thermoelectrics Handbook: Macro to Nano, Chapter␣50, ed. D.M. Rowe (Boca Raton: CRC, 2006), p. 50.

    Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  4. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  5. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).

    Article  Google Scholar 

  6. G.H. Zhu, H. Lee, Y. Lan, X. Wang, G. Joshi, D. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. Dresselhaus, G. Chen, and Z. Ren, Phys. Rev. Lett. 102, 196803 (2009).

    Article  Google Scholar 

  7. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  8. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  9. J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  Google Scholar 

  10. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  Google Scholar 

  11. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  12. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  13. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  14. N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 114, 134311 (2013).

    Article  Google Scholar 

  15. Y. Ohishi, K. Kurosaki, T. Suzuki, H. Muta, S. Yamanaka, N. Uchida, T. Tada, and T. Kanayama, Thin Solid Films 534, 238 (2013).

    Article  Google Scholar 

  16. A. Yusufu, K. Kurosaki, Y. Miyazaki, M. Ishimaru, A. Kosuga, Y. Ohishi, H. Muta, and S. Yamanaka, Nanoscale 6, 13921 (2014).

    Article  Google Scholar 

  17. Y. Ohishi, Y. Miyazaki, H. Muta, K. Kurosaki, S. Yamanaka, N. Uchida, and T. Tada, J. Electron. Mater. 44, 2074 (2015).

    Article  Google Scholar 

  18. J. Xie, Y. Ohishi, Y. Miyazaki, A. Yusufu, H. Muta, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 118, 065103 (2015).

    Article  Google Scholar 

  19. K. Kurosaki, A. Yusufu, Y. Miyazaki, Y. Ohishi, H. Muta, and S. Yamanaka, Mater. Trans. 57, 1018 (2016).

  20. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, AYu Samunin, and M.V. Vedernikov, Rev. Lett. B 74, 045207 (2006).

    Google Scholar 

  21. J.F. Smith, Bull. Alloy Phase Diagr. 6, 266 (1985).

    Article  Google Scholar 

  22. JCPDS Card Nos. 00-005-0565 (Si) and 01-072-6183 (VSi2) (XRD)

  23. R.E. Honig, RCA Rev. 18, 195 (1957).

    Google Scholar 

  24. J.P. Dismukes, L. Ekstrom, and R.J. Pfaff, J. Phys. Chem. Solids 68, 3021 (1964).

    Article  Google Scholar 

  25. X.B. Zhao, H.Y. Chen, E. Muller, and C. Drasar, J. Alloys Compd. 365, 206 (2004).

    Article  Google Scholar 

  26. B. Du, H. Li, J. Xu, X. Tang, and C. Uher, J. Solid State Chem. 184, 109 (2011).

    Article  Google Scholar 

  27. W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sora-at Tanusilp or Ken Kurosaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanusilp, Sa., Kurosaki, K., Yusufu, A. et al. Enhancement of Thermoelectric Properties of Bulk Si by Dispersing Size-Controlled VSi2 . J. Electron. Mater. 46, 3249–3255 (2017). https://doi.org/10.1007/s11664-016-5066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5066-4

Keywords

Navigation