Skip to main content
Log in

Thermal and Electrical Conductivity of Ge1Sb4Te7 Chalcogenide Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The unique properties of the Ge1Sb4Te7 alloy as a chalcogenide make it a good candidate for application in phase-change random access memory as well as thermoelectric materials. The thermal and electrical conductivity of the Ge1Sb4Te7 alloy play an important role in both applications. This work aims to determine the thermal conductivity and electrical resistivity of the Ge1Sb4Te7 alloy as a function of temperature and to discuss the thermal conduction mechanism. Thermal conductivity and electrical resistivity were measured from room temperature to 778 K using the hot strip method and the four-terminal method, respectively. The thermal conductivity of the Ge1Sb4Te7 alloy shows an interesting temperature dependence: it decreases up to about 600 K, and then increases with increasing temperature. The electrical resistivity shows a monotonic increase with increasing temperature. Through a discussion of the thermal conductivity results together with electrical resistivity results, it is proposed that electronic thermal conductivity dominates the thermal conductivity, while the bipolar diffusion contributes to the increase in the thermal conductivity at higher temperatures. The resonance bonding existing in this chalcogenide alloy accounts for the low lattice thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  2. N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. 69, 2849 (1991).

    Article  Google Scholar 

  3. R. Lan, Thermal conductivities and conduction mechanisms of Sb-Te binary and Sb2Te3-GeTe pseudobinary chalcogenide alloys. Ph.D. Dissertation, Tokyo Institute of Technology (2012).

  4. J. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  7. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  Google Scholar 

  8. A. Chatterjee and K. Biswas, Angew. Chem. Int. Ed. 54, 5623 (2015).

    Article  Google Scholar 

  9. A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas, Energy Environ. Sci. 9, 2011 (2016).

    Article  Google Scholar 

  10. S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, and K. Biswas, Chem. Mater. 27, 7171 (2015).

    Article  Google Scholar 

  11. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nat. Mater. 7, 972 (2008).

    Article  Google Scholar 

  12. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig, Nat. Mater. 10, 202 (2011).

    Article  Google Scholar 

  13. E.R. Sittner, K.S. Siegert, P. Jost, C. Schlockermann, F.R.L. Lange, and M. Wuttig, Phys. Status Solidi Appl. Mater. Sci. 210, 147 (2013).

    Article  Google Scholar 

  14. T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers, 2004), p. 105.

    Book  Google Scholar 

  15. V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, J. Appl. Phys. 98, 013520 (2005).

    Article  Google Scholar 

  16. H.-K. Lyeo, D.G. Cahill, B.-S. Lee, J.R. Abelson, M.-H. Kwon, K.-B. Kim, S.G. Bishop, and B.-K. Cheong, Appl. Phys. Lett. 89, 151904 (2006).

    Article  Google Scholar 

  17. J.P. Reifenberg, M.A. Panzer, S.-B. Kim, A.M. Gibby, Y. Zhang, S. Wong, H.-S. Philip Wong, E. Pop, and K.E. Goodson, Appl. Phys. Lett. 91, 111904 (2007).

    Article  Google Scholar 

  18. W.P. Risk, C.T. Rettner, and S. Raoux, Appl. Phys. Lett. 94, 101906 (2009).

    Article  Google Scholar 

  19. J.M. Yanez-Limon, J. G-Hernandez, J.J. A-Gil, I. Delgadillo, and H. Vargas, Phys. Rev. B, 52, 16321 (1995).

  20. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, Jpn. J. Appl. Phys. 49, 078003 (2010).

    Article  Google Scholar 

  21. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Appl. Phys. 112, 053712 (2012).

    Article  Google Scholar 

  22. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Appl. Phys. 110, 023701 (2011).

    Article  Google Scholar 

  23. P.P. Konstantinov, L.E. Shelimova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov, Inorg. Mater. 37, 662 (2001).

    Article  Google Scholar 

  24. S.E. Gustafsson, E. Karawacki, and M.N. Khan, J. Phys. D 12, 1411 (1979).

    Article  Google Scholar 

  25. S.E. Gustafsson, E. Karawacki, and M.N. Khan, J. Appl. Phys. 52, 2596 (1981).

    Article  Google Scholar 

  26. S.E. Gustafsson, J. Appl. Phys. 53, 6064 (1982).

    Article  Google Scholar 

  27. S.E. Gustafsson, E. Karawacki, and M.A. Chohan, J. Phys. D 19, 727 (1986).

    Article  Google Scholar 

  28. M. Susa, K. Nagata, and K.S. Goto, Trans. Jpn. Inst. Met. 29, 133 (1988).

    Article  Google Scholar 

  29. L.E. Shelimova, O.G. Karpinskii, V.S. Zemskov, and P.P. Konstantinov, Inorg. Mater. 36, 235 (2000).

    Article  Google Scholar 

  30. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 3525 (2014).

    Google Scholar 

  31. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H.C. Wille, R.P. Hermann, and M. Wuttig, Adv. Funct. Mater. 21, 2232 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

A portion of the present work was financially supported by the Natural Science Foundation of China (no. 51401090) and the Natural Science Foundation of Jiangsu Province (grant no. BK20140515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, R., Endo, R., Kuwahara, M. et al. Thermal and Electrical Conductivity of Ge1Sb4Te7 Chalcogenide Alloy. J. Electron. Mater. 46, 955–960 (2017). https://doi.org/10.1007/s11664-016-4982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4982-7

Keywords

Navigation