Skip to main content
Log in

Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for “RE-free” red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol–gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D. Rack and P.H. Holloway, Mater. Sci. Eng. R 21, 171 (1998).

    Article  Google Scholar 

  2. C. Hecht, F. Stadler, P.J. Schmidt, J.S. auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).

    Article  Google Scholar 

  3. C.J. Duan, X.J. Wang, W.M. Otten, A.C.A. Delsing, J.T. Zhao, and H.T. Hintzen, Chem. Mater. 20, 1597 (2008).

    Article  Google Scholar 

  4. Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda, and M. Mitomo, Chem. Mater. 20, 6704 (2008).

    Article  Google Scholar 

  5. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, Electrochem. Solid State Lett. 9, H22 (2006).

    Article  Google Scholar 

  6. M. Humphries, Rare Earth Elements: The Global Supply Chain (Collingdale: DIANE, 2010), p. 1.

    Google Scholar 

  7. A.A. Volokh, A.V. Gorbunov, S.F. Gundorina, B.A. Revich, M.V. Frontasyeva, and S.-P. Chen, Sci. Total Environ. 95, 141 (1990).

    Article  Google Scholar 

  8. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, Opt. Mater. 36, 1907 (2014).

    Article  Google Scholar 

  9. J. Beltran-Huarac, J. Wang, H. Tanaka, W.M. Jadwisienczak, B.R. Weiner, and G. Morell, J. Appl. Phys. 114, 053106 (2013).

    Article  Google Scholar 

  10. T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. Bao, J. Wang, and J. Chen, J. Mater. Chem. C 1, 4327 (2013).

    Article  Google Scholar 

  11. Z. Qiu, T. Luo, J. Zhang, W. Zhou, L. Yu, and S. Lian, J. Lumin. 158, 130 (2015).

    Article  Google Scholar 

  12. M.M. Medić, M.G. Brik, G. Dražić, Ž.M. Antić, V.M. Lojpur, and M.D. Dramićanin, J. Phys. Chem. C 119, 724 (2015).

    Article  Google Scholar 

  13. J. Stade, D. Hahn, and R. Dittmann, J. Lumin. 8, 318 (1974).

    Article  Google Scholar 

  14. Y.-D. Ho, C.-H. Su, C.-L. Huang, and A. Srivastava, J. Am. Ceram. Soc. 97, 358 (2014).

    Article  Google Scholar 

  15. R.K. Bhuyan, T.S. Kumar, A. Perumal, P. Saravanan, and D. Pamu, J. Exp. Nanosci. 8, 371 (2013).

    Article  Google Scholar 

  16. R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, A. Perumal, and D. Pamu, Mater. Sci. Eng. B 178, 471 (2013).

    Article  Google Scholar 

  17. D. Ravichandran, R. Roy, A.G. Chakhovskoi, C.E. Hunt, W.B. White, and S. Erdei, J. Lumin. 71, 291 (1997).

    Article  Google Scholar 

  18. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  19. J.P. Perdew and K. Burke, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  20. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  21. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  22. H. Haefke, H.P. Lang, R. Sum, H.-J. Güntherodt, L. Berthold, and D. Hesse, Appl. Phys. Lett. 61, 2359 (1992).

    Article  Google Scholar 

  23. M.R.S. Silva, S.C. Souza, I.M.G. Santos, M.R. Cassia-Santos, L.E.B. Soledade, A.G. Souza, S.J.G. Lima, and E. Longo, J. Therm. Anal. Calorim. 79, 421 (2005).

    Article  Google Scholar 

  24. ICDD, PDF-2 2015 (Database), ed. S. Kabekkodu (Newtown Square, PA: International Centre for Diffraction Data, 2015).

  25. B. Henderson and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford: Oxford Science, 2006).

    Google Scholar 

  26. H.E. Bennett and J.O. Porteus, J. Opt. Soc. Am. 51, 123 (1961).

    Article  Google Scholar 

  27. G. Kimmel and J. Zabicky, JCPDS-ICDD 42, 238 (2000).

    Google Scholar 

  28. P.C. Tsai, W.D. Hsu, and S.K. Lin, J. Electrochem. Soc. 161, A439 (2014).

    Article  Google Scholar 

  29. A.K. Singh, A. Dhillon, T.D. Senguttuvan, and A.M. Siddiqui, Int. J. Curr. Eng. Technol. 4, 399 (2014).

    Google Scholar 

  30. J. Stade, D. Hahn, and R. Dittmann, J. Lumin. 8, 308–317 (1974).

    Article  Google Scholar 

  31. A. Golubović and M. Radović, J. Serb. Chem. Soc. 76, 1561–1566 (2011).

    Article  Google Scholar 

  32. H. Kominami, M. Tanaka, K. Hara, Y. Nakanishi, and Y. Hatanaka, Phys. Status Solidi C 3, 2758 (2006).

    Article  Google Scholar 

  33. L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial supports from the Ministry of Science and Technology (MOST), Taiwan with the projects MOST 103-221-E-006-071 and MOST 103-2221-E-006-043-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-kang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CS., Chang, MC., Huang, CL. et al. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor. J. Electron. Mater. 45, 6214–6221 (2016). https://doi.org/10.1007/s11664-016-4846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4846-1

Keywords

Navigation