Skip to main content
Log in

Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz–1 MHz) and temperature (303–593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole–Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cruickshank, J. Eur. Ceram. Soc. 23, 2721 (2003).

    Article  Google Scholar 

  2. S. Sonmezoglu, A. Arslan, T. Serin, and N. Serin, Phys. Scr. 84, 065602 (2011).

    Article  Google Scholar 

  3. J. Yu, T. Ishikawa, Y. Arai, S. Yoda, M. Itoh, and Y. Saita, Appl. Phys. Lett. 87, 252904 (2005).

    Article  Google Scholar 

  4. P.K. Jana, S. Sarkar, and B.K. Chaudhuri, J. Phys. D Appl. Phys. 40, 556 (2007).

    Article  Google Scholar 

  5. P. Thongbai, T. Yamwong, and S. Maensiri, Solid State Commun. 147, 385 (2008).

    Article  Google Scholar 

  6. Y.Q. Lin, X.M. Chen, and X.Q. Liu, Solid State Commun. 149, 784 (2009).

    Article  Google Scholar 

  7. Y.Q. Lin and X.M. Chen, Appl. Phys. Lett. 96, 142902 (2010).

    Article  Google Scholar 

  8. W.T. Fu and D.J.W. Ijdo, J. Solid State Chem. 178, 2363 (2005).

    Article  Google Scholar 

  9. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1, 715 (1996).

    Article  Google Scholar 

  10. N. Floros, J.T. Rijssenbeek, A.B. Martinson, and K.R. Poeppelmeier, Solid State Sci. 4, 1495 (2002).

    Article  Google Scholar 

  11. D. Choudhury, A. Hazarika, A. Venimadhav, C. Kakarla, K.T. Delaney, P.S. Devi, P. Mondal, R. Nirmala, J. Gopalakrishnan, N.A. Spaldin, U.V. Waghmare, and D.D. Sarma, Phys. Rev. B 82, 134203 (2010).

    Article  Google Scholar 

  12. S.B. Reddy, K.M. Kant, K.P. Rao, M. Opel, and M.S. Ramachandra Rao, J. Magn. Magn. Mater. 303, 332 (2006).

    Article  Google Scholar 

  13. M.R. Palacín, J. Bassas, J.R. Carvajal, and P. Gómez-Romero, J. Mater. Chem. 3, 1171 (1993).

    Article  Google Scholar 

  14. P. Gómez-Romero, M.R. Palacín, N. Casañ, A. Fuertes, and B. Martínez, Solid State Ion. 67, 603 (1993).

    Article  Google Scholar 

  15. W.Z. Yang, M.M. Mao, X.Q. Liu, and X.M. Chen, J. Appl. Phys. 107, 124102 (2010).

    Article  Google Scholar 

  16. S. Sonmezoglu and O.A. Sonmezoglu, Mater. Sci. Eng. C 31, 1619 (2011).

    Article  Google Scholar 

  17. M.P. Dasari, K.S. Rao, P.M. Krishna, and G.G. Krishna, Acta Phys. Pol. A 119, 387 (2011).

    Article  Google Scholar 

  18. S.S. Ata-Allah, J. Solid State Chem. 177, 4443 (2004).

    Article  Google Scholar 

  19. D.K. Mahato, A. Dutta, and T.P. Sinha, Mater. Res. Bull. 47, 4226 (2012).

    Article  Google Scholar 

  20. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  21. J.S. Kim, J. Phys. Soc. Jpn. 70, 3129 (2001).

    Article  Google Scholar 

  22. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, and R.S. Katiyar, Phys. Status Solidi B 244, 2254 (2007).

    Article  Google Scholar 

  23. M.A.L. Nobreand and S. Lanredi, J. Appl. Phys. 93, 5576 (2003).

    Article  Google Scholar 

  24. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).

    Article  Google Scholar 

  25. M.J.S. Rocha, M.C.C. Filho, K.R.B. Theophilo, J.C. Denardin, I.F. Vasconcelos, E.B. Araujo, and A.S.B. Sombra, Mater. Sci. Appl. 3, 6 (2012).

    Google Scholar 

  26. C.C. Silva and A.S.B. Sombra, Mater. Sci. Appl. 2, 1349 (2011).

    Google Scholar 

  27. R. Richert and H. Wagner, Solid State Ion. 105, 167 (1998).

    Article  Google Scholar 

  28. A.N. Papathanassiou, J. Phys. D Appl. Phys. 35, L88 (2002).

    Article  Google Scholar 

  29. A.N. Papathanassiou, J. Non-Cryst. Solids 352, 5444 (2006).

    Article  Google Scholar 

  30. N.S. Asık, R. Tas, S. Sönmezoglu, M. Can, and G. Cankaya, J. Non-cryst. Solids 356, 1848 (2010).

    Article  Google Scholar 

  31. S. Senkul, R. Tas, S. Sonmezoglu, and M. Can, Int. J. Polym. Anal. Charact. 17, 257 (2012).

    Article  Google Scholar 

  32. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983).

    Google Scholar 

  33. D.K. Mahato and T.P. Sinha, J. Mater. Sci. Mater. Electron. 24, 43999 (2013).

    Article  Google Scholar 

  34. C. Bharti, M.K. Das, A. Sen, S. Chanda, and T.P. Sinha, J. Solid State Chem. 210, 219 (2014).

    Article  Google Scholar 

  35. C. Bharti, A. Sen, S. Chanda, and T.P. Sinha, J. Alloys Compd. 590, 125 (2014).

    Article  Google Scholar 

  36. D.K. Mahato and T.P. Sinha, J. Alloys Compd. 634, 246 (2015).

    Article  Google Scholar 

  37. D.K. Mahato, S. Saha, and T.P. Sinha, J. Mater. Sci. Mater. Electron. 27, 3845 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev K. Mahato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, D.K., Sinha, T.P. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics. J. Electron. Mater. 46, 107–115 (2017). https://doi.org/10.1007/s11664-016-4842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4842-5

Keywords

Navigation