Skip to main content
Log in

Dielectric and optical spectroscopy of new polycrystalline ceramic for device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline double perovskite Li2GdFeTiO6 was synthesized through the solid-state mixed oxide method and its preliminary crystal structure was investigated by the XRD technique. The structure of the material was identified to be tetragonal with space group P4bm using POWD and MATCH software. The morphology of the sample was investigated through a scanning electron microscope (SEM) and the average grain size was found to be 3.82 μm using the intercept technique. The investigation of the perovskite phase and various vibrational modes were carried out through FTIR spectroscopic technique. The bandgap (Eg = 1.73 eV) and visible light sensitivity of the material were identified by UV–Visible spectroscopic operation carried in the range 200–700 nm. The dielectric and related properties were investigated as a function of frequency and temperature using an impedance analyzer (LCR meter). Room-temperature dielectric investigation suggests it may be useful for storage application. The transport activities investigated through conductivity, impedance, and modulus technique illustrate the significant influence of grains on transportation of charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Ryu, S. Priya, K. Uchino, H.E. Kim, J. Electroceram. 8, 107 (2002)

    CAS  Google Scholar 

  2. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 9–16 (2019)

    CAS  Google Scholar 

  3. O. Bohnke, Solid State Ion. 179, 9 (2008)

    CAS  Google Scholar 

  4. Z.F. Zheng, H.Z. Fang, Z.K. Liu, Y. Wang, J. Electrochem. Soc. 162, 244 (2015)

    Google Scholar 

  5. A.G. Belous, G.N. Novitskaya, S.V. Polyanetskaya, Y.I. Gornikov, Inorg. Mater. 23, 412 (1987)

    Google Scholar 

  6. S. Stramare, V. Thangadurai, W. Weppner, Chem. Mater. 15, 3974 (2003)

    CAS  Google Scholar 

  7. T. Yoshinori, S. Shinichiro, N. Naoto, Rep. Prog. Phys. 77, 076501 (2014)

    Google Scholar 

  8. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 065017 (2016)

    Google Scholar 

  9. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    CAS  Google Scholar 

  10. K. Ueda, H. Tabata, T. Kawai, Science 280, 1064 (1998)

    CAS  Google Scholar 

  11. H. Kawanaka, I. Hase, S. Toyama, Y. Nishihara, J. Phys. Soc. Jpn. 68, 2890–2893 (1999)

    CAS  Google Scholar 

  12. P.N. Lekshmia, S.S. Pillai, K.G. Suresh, P.N. Santhosh, M.R. Varmaa, J. Alloys Compd. 522, 90–95 (2012)

    Google Scholar 

  13. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130–4136 (2003)

    CAS  Google Scholar 

  14. C. Bharti, S.N. Choudhary, T.P. Sinha, J. Surf. Sci. Technol. 24, 1–10 (2008)

    CAS  Google Scholar 

  15. S. Saha, T.P. Sinha, J. Phys. 14, 249–258 (2002)

    CAS  Google Scholar 

  16. Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, J. Appl. Phys. 90, 022904 (2007)

    Google Scholar 

  17. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 192905 (2007)

    Google Scholar 

  18. S. Ke, H. Huang, J. Appl. Phys. 108, 064104 (2010)

    Google Scholar 

  19. R.C. Sahoo, S. Das, T.K. Nath, J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.04.039

    Article  Google Scholar 

  20. S. Kumar, G. Giovannetti, J. van den Brink, S. Picozzi, Phys. Rev. B 82, 134429 (2010)

    Google Scholar 

  21. S. Yañez-Vilar, E.D. Mun, V.S. Zapf, B.G. Ueland, J.S. Gardner, J.D. Thompson, J. Singleton, M.M. Sánchez-Andujar, J. Mira, N. Biskup, M.A. Señaris-Rodríguez, C.D. Batista, Phys. Rev. B 84, 134427 (2011)

    Google Scholar 

  22. D.J. Singh, C.H. Park, Phys. Rev. Lett. 100, 087601 (2008)

    CAS  Google Scholar 

  23. R.B.M. Filho, A.P. Ayala, C.W.A. Paschoal, Appl. Phys. Lett. 102, 192902 (2013)

    Google Scholar 

  24. S. Wischnitzer, Introduction to Electron Microscopy (Pergamon Press, New York, 1987).

    Google Scholar 

  25. R.K. Parida, B. Mohanty, S. Bhattacharjee, S.K. Mohanty, B.N. Parida, J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04672-1

    Article  Google Scholar 

  26. J.Y. Son, B.G. Kim, J.H. Cho, Grain dependence of ferroelectric domain switching on SrBi2Ta2O9 thin films observed by Kelvin probe force microscope. Thin Solid Films 500, 360–363 (2006)

    CAS  Google Scholar 

  27. S. Wischnitzer, Pergamon Press, New York (1987)

  28. R. Andoulsi, K. Horchani-Naifer, M. Férid, Powder Technol. 230, 183 (2012)

    CAS  Google Scholar 

  29. G.B. Kumar, S. Buddhudu, Ceram. Int. 35, 521 (2009)

    CAS  Google Scholar 

  30. P. Minutolo, G. Gambi, A. Dlessio, Symp. Int. Combust. 26, 951 (1996)

    Google Scholar 

  31. A. Rai, A.K. Thakur, AIP Conf. Proc. 1728, 020491 (2016)

    Google Scholar 

  32. R.J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, N. Hirosaki, T. Sekiya, Appl. Phys. Lett. 80, 835 (2002)

    CAS  Google Scholar 

  33. R.K. Parida, D.K. Pattanayak, B. Mohanty, B.N. Parida, J. Mol. Struct. 1205, 127607 (2020)

    CAS  Google Scholar 

  34. C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  35. K. Paridaa, S.K. Dehuryb, R.N.P. Choudhary, Phys. Lett. A 380, 4083–4091 (2016)

    Google Scholar 

  36. K. Paridaa, S.K. Dehuryb, R.N.P. Choudhary, Mater. Sci. Eng. B 225, 173–181 (2017)

    Google Scholar 

  37. K. Paridaa, S.K. Dehuryb, R.N.P. Choudhary, Chin. J. Phys. 59, 231–241 (2019)

    Google Scholar 

  38. S. Ke, H. Fan, H. Huang, J Electroceram 22, 252–256 (2009)

    CAS  Google Scholar 

  39. H. Rahmouni, M. Smari, B. Cherif, E. Dhahrib, K. Khirounia, Dalton Trans. 44, 10457 (2015)

    CAS  Google Scholar 

  40. B. Tilak, Am. J. Mater. Sci. 2, 110 (2012)

    Google Scholar 

  41. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388–6394 (2011)

    CAS  Google Scholar 

  42. S. Sen, R.N.P. Choudhary, P. Pramanik, Electroceram. Phys. B 56, 387 (2007)

    Google Scholar 

  43. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    CAS  Google Scholar 

  44. N.G. McCrum, B.E. Read, G. Williams, Wiley, New York (1967)

  45. B.V.R. Chowdari, R. Gopalkrishnnan, Solid State Ion. 23, 225 (1987)

    CAS  Google Scholar 

  46. B.C. Sutar, P.R. Das, R.N.P. Choudhary, Adv. Mater. Lett. 5, 131 (2014)

    CAS  Google Scholar 

  47. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    CAS  Google Scholar 

  48. M.A.L. Nobre, S.J. Langfredi, Phys. Chem. Solids 62, 20 (1999)

    Google Scholar 

  49. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    CAS  Google Scholar 

  50. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Google Scholar 

  51. N. Zidi, A. Chaouchi, S. d’astorg, M. Rguiti, C. Courtois, Bull. Mater. Sci. 38, 731–737 (2015)

    CAS  Google Scholar 

  52. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689 (2008)

    CAS  Google Scholar 

  53. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  54. M.A.E.F. Gabal, Y.M. Al Angari, A.Y. Obaid, CR Chim. 16, 704 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, R.K., Bhattacharjee, S., Mohanty, B. et al. Dielectric and optical spectroscopy of new polycrystalline ceramic for device applications. J Mater Sci: Mater Electron 32, 13568–13580 (2021). https://doi.org/10.1007/s10854-021-05932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05932-4

Navigation