Skip to main content

Advertisement

Log in

Electrodeposition of Gold on Lignocelluloses and Graphite-Based Composite Paper Electrodes for Superior Electrical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphite-based composites are commonly used as an anode and current collector for energy storage devices; however, they have inherently limited potential for large scale rechargeable systems due to a brittle structure. In this study, flexible and light-weight graphite-based electrodes are prepared by incorporation of lignocelluloses fibers directly collected from a self-growing plant, Typha Angistifolia. Electrical properties of graphite and lignocelluloses composite sheets are enhanced by electrodeposition of gold in a three-electrode setup. Electrochemical deposition of gold on a lignocelluloses/graphite paper electrode was obtained in potentiostatic mode by the application of reduction potential −0.95 V for 2000 s, 600 s, and 100 s. The gold-deposited paper electrodes showed efficient kinetics by shifting redox peaks towards lower potentials in cyclic voltammetry measurements, whereas impedance measurements revealed seven orders of magnitude reduction in the resistive properties. Incorporated flexibility and superior electrical/electrochemical performance within presented graphite-based composites will provide cutting-edge characteristics for high-tech application of energy storage devices by keeping a focus on modern disposable technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. He and R. Manoray, Wear 249, 626 (2001).

    Article  Google Scholar 

  2. K. Feneberger, Ind. Lub. Tribol. 25, 176 (1973).

    Article  Google Scholar 

  3. K. Adachi, U. Cho, S.K. Sinha, and K. Kato, Trib. Trans. 44, 41 (2001).

    Article  Google Scholar 

  4. F. Delannay, L. Froyen, and A. Deruyttere, J. Mater. Sci. 22, 1 (1987).

    Article  Google Scholar 

  5. P.J. Bonal, A. Kohyama, J. Laan, and L. Snead, MRS Bull. 34, 28 (2009).

    Article  Google Scholar 

  6. M. Inagaki, J. Mater. Res. 4, 1560 (1989).

    Article  Google Scholar 

  7. H. Fukushima, L. Darzal, B. Rook, and M. Rich, J. Therm. Anal. Calorim. 85, 235 (2006).

    Article  Google Scholar 

  8. Y. Lu, D. Zhang, L. Wang, M. Xu, J. Song, and B.J. Goodenough, J. Electrochem. Soc. 159, 321 (2012).

    Article  Google Scholar 

  9. S.N. Hochgatterer, R.M. Schwieger, S. Koller, S. Raimann, T. Wohrle, C. Wurm, and M. Winter, Electrochem. Solid-State Lett. 11, 76 (2008).

    Article  Google Scholar 

  10. B.D. Tow, E. Peled, and L. Burstien, J. Electrochem. Soc. 146, 824 (1999).

    Article  Google Scholar 

  11. R.J.S. Prabakar, J. Jeong, S.J. Kwak, and M. Pyo, J. Electrochem. Soc. 161, 896 (2014).

    Article  Google Scholar 

  12. Q. Wang, J. Sun, X. Yao, and C. Chen, J. Electrochem. Soc. 153, 329 (2006).

    Article  Google Scholar 

  13. R.S. Sivakkumar, Y.J. Nerkar, and G.A. Pandolfo, Electrochim. Acta 55, 3330 (2010).

    Article  Google Scholar 

  14. H. Wang and M. Yoshio, Electrochem. Commun. 8, 1481 (2006).

    Article  Google Scholar 

  15. H. Wang, M. Yoshio, K.A. Thapa, H. Nakamura, and J. Power, Sources 169, 375 (2007).

    Article  Google Scholar 

  16. H. Wang and M. Yoshio, Electrochem. Commun. 10, 382 (2008).

    Article  Google Scholar 

  17. H. Wang and M. Yoshio, Electrochem. Commun. 177, 681 (2008).

    Google Scholar 

  18. V. Khomenko, R.E. Pinero, and F. Beguin, J. Power Sources 177, 643 (2008).

    Article  Google Scholar 

  19. E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, and H. Fujii, Carbon 44, 983 (2006).

    Article  Google Scholar 

  20. G. Liu, H. Wang, X. Li, Y. Rong, Z. Ku, M. Xu, M. Liu, M. Hu, Y. Yang, P. Xiang, T. Shu, and H. Han, Electrochim. Acta 69, 334 (2012).

    Article  Google Scholar 

  21. G. Veerappan, K. Bojan, and W.S. Rhee, Appl. Mater. Interfaces 3, 857 (2011).

    Article  Google Scholar 

  22. J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, and Q. Meng, Carbon 47, 2704 (2009).

    Article  Google Scholar 

  23. B. Logan, S. Cheng, V. Watson, and G. Estadt, Environ. Sci. Tech. 41, 3341 (2007).

    Article  Google Scholar 

  24. A.C. Bessel, K. Laubernds, M.N. Rodriguez, and K.T.R. Baker, J. Phys. Chem. 105, 1115 (2001).

    Article  Google Scholar 

  25. Y. Fu and M. Hou, Carbon 46, 19 (2008).

    Article  Google Scholar 

  26. M.S. Wu, Appl. Phys. Lett. 87, 153102 (2005).

    Article  Google Scholar 

  27. K.R. Prasad and N. Miura, Appl. Phys. Lett. 85, 4199 (2004).

    Article  Google Scholar 

  28. F. Shi, Z. Wang, and X. Zhang, Adv. Mat. 17, 1005 (2005).

    Article  Google Scholar 

  29. M.J. Zheng, L.D. Zhang, G.H. Li, and W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002).

    Article  Google Scholar 

  30. S. Ishrat, K. Maaz, K.J. Lee, M.H. Jung, and G.H. Kim, J. Alloy. Compd. 541, 483 (2012).

    Article  Google Scholar 

  31. S. Ishrat, K. Maaz, K.J. Lee, M.H. Jung, and G.H. Kim, J. Solid State Chem. 199, 160 (2013).

    Article  Google Scholar 

  32. J.C. Hill, A.T. Landers, and J.A. Switzer, Nat. Mater. 14, 1150 (2015).

    Article  Google Scholar 

  33. X. Dai and G.R. Compton, Analyt. Sci. 22, 567 (2006).

    Article  Google Scholar 

  34. R.I. Cristie and P.B. Cameron, Gold Bull. 27, 12 (1994).

    Article  Google Scholar 

  35. R.I. Cristie and W. Mazur, Gold. Bull. 19, 40 (1986).

    Article  Google Scholar 

  36. J. Wang, L. Wang, J. Di, and Y. Tu, Talanta 77, 1454 (2009).

    Article  Google Scholar 

  37. A. Razaq, M.H. Asif, R. Kalsoom, A.F. Khan, M.S. Awan, S. Ishrat, and S.M. Ramay, J. Appl. Poly. Sci. 132, 1794 (2015).

    Google Scholar 

  38. M.S. Yazici, D. Krassowski, and J. Prakash, J. Power Sources 141, 171 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the COMSATS research grant program (CRGP) COMSATS Institute of Information Technology (CIIT) (16-46/CRGP/CIIT/LHR13), higher education commission HEC Pakistan startup research Grant (No. PD/IPFP/HRD/HEC/2013/1922), and Deanship of Scientific Research Funding at King Saud University, Saudi Arabia (RG 1435-004) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Razaq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, I., Razaq, A., Idrees, M. et al. Electrodeposition of Gold on Lignocelluloses and Graphite-Based Composite Paper Electrodes for Superior Electrical Properties. J. Electron. Mater. 45, 5140–5145 (2016). https://doi.org/10.1007/s11664-016-4727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4727-7

Keywords

Navigation