Skip to main content
Log in

Variation of Dielectric and Electrical Properties of Zr-Substituted Lead Calcium Iron Niobate with Temperature and Frequency

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The purpose of the present study is to improve the dielectric properties of lead calcium iron niobate with Zr substitution, and to make it suitable for multilayer capacitor applications in resonant circuits. (Pb0.45Ca0.55)(Fe0.5Nb0.5)1−y Zr y O3 dielectric ceramics where y varies from 0.00 to 0.15 in steps of 0.03, that have been synthesized by the columbite precursor method. Dielectric and electrical properties were measured as a function of frequency (10 kHz to 1 MHz) and temperature. Two frequency dependent anomalies were observed in relative permittivity (ε r) versus temperature (T) plots around 375 K and between 500 K and 575 K. The temperature coefficient of relative permittivity, (τ ε ) has been improved with the substitution of (Fe0.5Nb0.5)4+ ions by Zr4+ ions at B-sites. The single semicircle, observed in Nyquist plots at different temperatures, suggests a single relaxation process in the synthesized samples. The activation energies obtained from different dependences are found to be approximately comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.P. Raevski, S.P. Kubrin, S.I. Raevskaya, V.V. Titov, S.A. Prosandeev, D.A. Sarychev, M.A. Malitskaya, V.V. Stashenko, and I.N. Zakharchenko, Ferroelectrics 398, 16 (2010).

    Article  Google Scholar 

  2. D. Bochenek, P. Kruk, R. Skulski, and P. Wawrzala, J. Electroceram. 26, 8 (2011).

    Article  Google Scholar 

  3. B. Fang, Y. Shan, and H. Imoto, Jpn. J. Appl. Phys. 43, 2568 (2004).

    Article  Google Scholar 

  4. L. Kozielski and D. Bochenek, Process. Appl. Ceram. 7, 167 (2013).

    Article  Google Scholar 

  5. L.V. Xin, W. Nan, and C. Xiang-Ming, Chin. Phys. Lett. 31, 077701 (2014).

    Article  Google Scholar 

  6. D. Varsheny, R.N.P. Choudhary, C. Rinaldi, and R.S. Katiyar, Appl. Phys. A 89, 793 (2007).

    Article  Google Scholar 

  7. J. Kato, H. Kagata, and K. Nishimoto, Jpn. J. Appl. Phys. 31, 3144 (1992).

    Article  Google Scholar 

  8. E.S. Kim, Y.H. Kim, K.H. Yoon, D.H. Kim, and Y. Kim, Ferroelectrics 262, 275 (2001).

    Article  Google Scholar 

  9. E.S. Kim, J.S. Jeon, D.W. Kim, J.C. Moon, and H.S. Jang, Ferroelectrics 262, 269 (2001).

    Article  Google Scholar 

  10. C.Y. Kang, J.-W. Choi, S.-J. Yoon, and H.-J. Kim, J. Mater. Sci. - Mater. Electron. 10, 661 (1999).

    Article  Google Scholar 

  11. M. Hu, D. Zhou, D. Zhang, W. Lu, B. Li, J. Huang, and S. Gong, Mater. Sci Eng. B 99, 403 (2003).

    Article  Google Scholar 

  12. Q. Yang, E.S. Kim, J. Xu, and Z. Meng, Mater. Sci Eng. B 99, 332 (2003).

    Article  Google Scholar 

  13. Q.H. Yang, E.S. Kim, X. Jun, and Z. Meng, Mater. Sci. Eng. B 99, 259 (2003).

    Article  Google Scholar 

  14. Q.H. Yang, E.S. Kim, and X. Jun, Mater. Sci Eng. B 113, 224 (2002).

    Article  Google Scholar 

  15. Y.-C. Liou, M.-H. Weng, J.-H. Chena, and H.-Y. Lu, Mater. Chem. Phys. 97, 143 (2006).

    Article  Google Scholar 

  16. Z. Wang and X.-M. Chen, J. Phys. D Appl. Phys. 42, 175005 (2009).

    Article  Google Scholar 

  17. S.K. Kar and P. Kumar, Process. Appl. Ceram. 7, 181 (2013).

    Article  Google Scholar 

  18. M. Puri, S. Bahel, and S.B. Narang, J. Mater. Sci.-Mater. Electron. 27, 738 (2016).

    Article  Google Scholar 

  19. R.D. Shannon, Acta. Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  20. N.K. Singh, P. Kumar, R. Rai, and A.L. Kholkin, Adv. Mater. Lett. 3, 315 (2012).

    Article  Google Scholar 

  21. C. Bharti, S.N. Choudhary, and T.P. Sinha, J. Surf. Sci. Technol. 24, 1 (2008).

    Google Scholar 

  22. C. Ang and Z. Yu, Phys. Rev. B. 61, 957 (2000).

    Article  Google Scholar 

  23. M. Puri, S. Bahel, and S.B. Narang, J. Electron. Mater. 45, 959 (2016).

    Article  Google Scholar 

  24. I.P. Raevski, S.A. Kuropatkina, S.P. Kubrin, S.I. Raevskaya, V.V. Titov, D.A. Sarychev, M.A. Malitskaya, A.S. Bogatin, and I.N. Zakharchenko, Ferroelectrics 379, 48 (2009).

    Article  Google Scholar 

  25. Z. Wang, X.M. Chen, L. Ni, and X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007).

    Article  Google Scholar 

  26. Priyanka and A.K. Jha, Bull. Mater. Sci. 36, 135 (2013).

    Article  Google Scholar 

  27. W. Chen, W. Zhu, O.K. Tan, and X.F. Chen, J. Appl. Phys. 108, 034101 (2010).

    Article  Google Scholar 

  28. P.S. Das, P.K. Chakraborty, B. Behera, and R.N.P. Choudhary, Phys. B 395, 98 (2007).

    Article  Google Scholar 

  29. N.K. Singh, P. Kumar, A.K. Sharma, and R.N.P. Choudhary, Mater. Sci. 2, 1593 (2011).

    Google Scholar 

  30. B.K. Barick, R.N.P. Choudhary, and D.K. Pradhan, Ceram. Int. 39, 5695 (2013).

    Article  Google Scholar 

  31. A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Ei Marssi, and I. Luk Yanchuk, Eur. Phys. J. B 85, 215 (2012).

    Article  Google Scholar 

  32. A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006).

    Article  Google Scholar 

  33. B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).

    Article  Google Scholar 

  34. J. Plocharski and W. Wieczoreck, Solid State Ionics 979, 28 (1988).

    Google Scholar 

  35. R.S.T.M. Sohn, A.A.M. Macedo, M.M. Costa, S.E. Mazzetto, and A.S.B. Sombra, Phys. Scr. 82, 055702 (2010).

    Article  Google Scholar 

  36. M. Puri, S. Bahel, and S.B. Narang, J. Mater. Sci.-Mater. Electron. 27, 1077 (2016).

    Article  Google Scholar 

  37. B. Behera, P. Nayak, and R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008).

    Article  Google Scholar 

  38. A.K. Jonscher, Nat. 267, 673 (1977).

    Article  Google Scholar 

  39. C.M. Fu, H.S. Hsu, and Y.C. Chao, J. Appl. Phys. 93, 7127 (2003).

    Article  Google Scholar 

  40. S.B. Majumder, S. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 99, 024108 (2006).

    Article  Google Scholar 

  41. I.P. Raevski, A.S. Bogatin, M.A. Malitskaya, and L. Jastrabik, J. Appl. Phys. 93, 4130 (2003).

    Article  Google Scholar 

  42. C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    Article  Google Scholar 

  43. R. Martínez, V.S. Puli, and R.S. Katiyar, J. Mater. Sci. - Mater. Electron. 24, 2790 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their thanks to the University Grant Commission for the grant to Guru Nanak Dev University for potential of excellence program in material sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhleen Bindra Narang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, M., Bahel, S. & Narang, S.B. Variation of Dielectric and Electrical Properties of Zr-Substituted Lead Calcium Iron Niobate with Temperature and Frequency. J. Electron. Mater. 45, 5048–5057 (2016). https://doi.org/10.1007/s11664-016-4685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4685-0

Keywords

Navigation